
Advanced Bash−Scripting HOWTO

Table of Contents

Advanced Bash−Scripting HOWTO...1
A guide to shell scripting, using Bash...1

Mendel Cooper...1

Chapter 1. Why Shell Programming?...3

Chapter 2. Starting Off With a Sha−Bang...5

2.1. Invoking the script...7

2.2. Shell wrapper, self−executing script..8

Chapter 3. Tutorial / Reference...10

3.1. exit and exit status..11

3.2. Special characters used in shell scripts..12

3.3. Variables...16

3.4. Quoting..17

3.5. Tests...19
3.5.1. File test operators...20
3.5.2. Comparison operators (binary)..22

3.6. Operations..25

3.7. Variables Revisited..28
3.7.1. Typing variables: declare or typeset..31
3.7.2. RANDOM: generate random integer...32

3.8. Loops...33

3.9. Internal Commands and Builtins...37
3.9.1. Job Control Commands...40

3.10. External Filters, Programs and Commands..42

3.11. System and Administrative Commands...53

3.12. Backticks (`...`)..59

3.13. I/O Redirection...60

3.14. Regular Expressions..61
3.14.1. A Brief Introduction to Regular Expressions...61

Advanced Bash−Scripting HOWTO

i

Table of Contents

3.14.2. Using REs in scripts...61
Notes...62

3.15. Subshells..63

3.16. Functions...67

3.17. List Constructs...69

3.18. Arrays..73

3.19. Files..74

3.20. Here Documents...77

3.21. Miscellany...79

3.22. Debugging...82

3.23. Options..83

3.24. Gotchas..84

3.25. Bash, version 2..88

Chapter 4. Credits...89

Bibliography..90

Appendix A. Copyright ..90

Advanced Bash−Scripting HOWTO

ii

Advanced Bash−Scripting HOWTO

A guide to shell scripting, using Bash

Mendel Cooper

thegrendel@theriver.com

v0.1, 14 June 2000

This document is both a tutorial and a reference on shell scripting with Bash. It assumes no previous
knowledge of scripting or programming, but progresses rapidly toward an intermediate/advanced level of
instruction. The exercises and heavily−commented examples invite active reader participation. This is
essentially a synopsis of a complete book on the subject.

Table of Contents

1. Why Shell Programming?

2. Starting Off With a Sha−Bang

2.1. Invoking the script

2.2. Shell wrapper, self−executing script

3. Tutorial / Reference

3.1. exit and exit status

3.2. Special characters used in shell scripts

3.3. Variables

3.4. Quoting

3.5. Tests

3.6. Operations

Advanced Bash−Scripting HOWTO 1

3.7. Variables Revisited

3.8. Loops

3.9. Internal Commands and Builtins

3.10. External Filters, Programs and Commands

3.11. System and Administrative Commands

3.12. Backticks (`...`)

3.13. I/O Redirection

3.14. Regular Expressions

3.15. Subshells

3.16. Functions

3.17. List Constructs

3.18. Arrays

3.19. Files

3.20. Here Documents

3.21. Miscellany

3.22. Debugging

3.23. Options

3.24. Gotchas

3.25. Bash, version 2

4. Credits

Bibliography

A. Copyright

Advanced Bash−Scripting HOWTO

Advanced Bash−Scripting HOWTO 2

Chapter 1. Why Shell Programming?
The shell is a command interpreter. It is the insulating layer between the operating system kernel and the
user. Yet, it is also a fairly powerful programming language. A shell program, called a script , is an
easy−to−use tool for building applications by "gluing" together system calls, tools, utilities, and compiled
binaries. Virtually the entire repertoire of UNIX commands, utilities, and tools is available for invocation by
a shell script. If that were not enough, internal shell commands, such as testing and loop constructs, give
additional power and flexibility to scripts. Shell scripts lend themselves exceptionally well to to
administrative system tasks and other routine repetitive jobs not requiring the bells and whistles of a
full−blown tightly structured programming language.

A working knowledge of shell scripting is essential to everyone wishing to become reasonably adept at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /etc/rc.d to restore the system configuration and
set up services. A detailed understanding of these scripts is important for analyzing the behavior of a system,
and possibly modifying it.

Writing shell scripts is not hard to learn, since the scripts can be built in bite−sized sections and there is only
a fairly small set of shell−specific operators and options to learn. The syntax is simple and straightforward,
similar to that of invoking and chaining together utilities at the command line, and there are only a few
"rules" to learn. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

A shell script is a "quick and dirty" method of prototyping a complex application. Getting even a limited
subset of the functionality to work in a shell script, even if slowly, is often a useful first stage in project
development. This way, the structure of the application can be tested and played with, and the major pitfalls
found before proceeding to the final coding in C, C++, Java, or Perl.

Shell scripting hearkens back to the classical UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high powered
all−in−one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you
to alter your thinking processes to fit the tool.

When not to use shell scripts

•
resource−intensive tasks, especially where speed is a factor

•
complex applications, where structured programming is a necessity

•
file handling (Bash is limited to serial file access, and that only in a particularly clumsy and
inefficient line−by−line fashion)

•
need to generate or manipulate graphics or GUIs

•
need direct access to system hardware

•
need port or socket I/O

Chapter 1. Why Shell Programming? 3

• need to use libraries or interface with legacy code

If any of the above applies, consider a more powerful scripting language, perhaps Perl, Tcl, Python, or even a
high−level compiled language such as C, C++, or Java. Even then, prototyping the application as a shell
script might still be a useful development step.

We will be using Bash, an acronym for "Born−Again Shell" and a pun on Stephen Bourne's now classic
Bourne Shell. Bash has become the de facto standard for shell scripting on all flavors of UNIX. Most of the
principles dealt with in this document apply equally well to scripting with other shells, such as the Korn
Shell, from which Bash derives some of its features, and the C Shell and its variants. (Note that C Shell
programming is not recommended due to certain inherent problems, as pointed out in a news group
posting by Tom Christiansen in October of 1993).

The following is a tutorial in shell scripting. It relies heavily on examples to illustrate features of the shell. As
far as possible, the example scripts have been tested, and some of them may actually be useful in real life.
The reader should cut out and save the examples, assign them appropriate names, give them execute
permission (chmod u+x scriptname), then run them to see what happens. Note that some of the scripts
below introduce features before they are explained, and this may require the reader to temporarily skip ahead
for enlightenment.

Unless otherwise noted, the author of this document wrote the example scripts that follow.

Advanced Bash−Scripting HOWTO

Chapter 1. Why Shell Programming? 4

http://www.etext.org/Quartz/computer/unix/csh.harmful.gz
http://www.etext.org/Quartz/computer/unix/csh.harmful.gz
http://www.etext.org/Quartz/computer/unix/csh.harmful.gz

Chapter 2. Starting Off With a Sha−Bang
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2−1. cleanup: A script to clean up the log files in /var/log

cleanup
Run as root, of course.

cd /var/log
cat /dev/null 62; messages
cat /dev/null 62; wtmp
echo "Logs cleaned up."

There is nothing unusual here, just a set of commands that could just as easily be invoked one by one from
the command line on the console or in an xterm. The advantages of placing the commands in a script go
beyond not having to retype them time and again. The script can easily be modified, customized, or
generalized for a particular application.

Example 2−2. cleanup An enhanced and generalized version of above script.

#!/bin/bash
cleanup, version 2
Run as root, of course.

if [−n $1]
Test if command line argument present.
then
 lines=$1
else
 lines=50
 # default, if not specified on command line.
fi

cd /var/log
tail −$lines messages 62; mesg.temp
Saves last section of message log file.
mv mesg.temp messages

cat /dev/null 62; messages
No longer needed, as the above method is safer.

cat /dev/null 62; wtmp
echo "Logs cleaned up."

exit 0
A zero return value from the script upon exit
indicates success to the shell.

Since you may not wish to wipe out the entire system log, this variant of the first script keeps the last section
of the message log intact. You will constantly discover ways of refining previously written scripts for
increased effectiveness.

The sha−bang (#!) at the head of a script tells your system that this file is a set of commands to be fed to

Chapter 2. Starting Off With a Sha−Bang 5

the command interpreter indicated. The #! is actually a two byte " magic number" that marks an executable
shell script (man magic gives more info on this fascinating topic). It also gives the path to the program that
the script invokes, whether this be the shell, a programming language, or a utility. This enables the specific
commands and directives embedded in the shell or program called.

#!/bin/sh
#!/bin/bash
#!/bin/awk
#!/usr/bin/perl
#!/bin/sed
#!/usr/bin/tcl

Each of the above script header lines calls a different command interpreter, be it /bin/sh, the default shell
(bash in a Linux system) or otherwise. Using #!/bin/sh, the default Bourne Shell in most commercial
variants of UNIX, makes the script portable to non−Linux machines, though you may have to sacrifice a few
bash−specific features (the script will conform to the POSIX sh standard).

Note that the path given at the "sha−bang" must be correct, otherwise an error message, usually Command
not found will be the only result of running the script.

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. Example 2, above, requires the initial #!, since the variable assignment line, lines=50, uses a
shell−specific construct. Note that #!/bin/sh invokes the default shell interpreter, which defaults to
/bin/bash on a Linux machine.

Advanced Bash−Scripting HOWTO

Chapter 2. Starting Off With a Sha−Bang 6

2.1. Invoking the script
Having written the script, you can invoke it by sh scriptname, or alternately bash scriptname.
(Not recommended is using sh <scriptname, since this effectively disables reading from input within the
script.) Much more convenient is to make the script itself directly executable by

Either:

chmod 755 scriptname (gives everyone execute permission)

or

chmod +x scriptname (gives everyone execute permission)
chmod u+x scriptname (gives only the script owner execute permission)

In this case, you could try calling the script by ./scriptname.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as
root, of course), to make the script available to yourself and all other users as a system−wide executable. The
script could then be invoked by simply typing scriptnamereturn' from the command line.

2.1. Invoking the script 7

2.2. Shell wrapper, self−executing script
A sed or awk script would normally be invoked from the command line by a sed −e commands or awk
−e commands. Embedding such a script in a bash script permits calling it more simply, and makes it
"reusable". This also permits combining the functionality of sed and awk, for example piping the output of a
set of sed commands to awk. As a saved executable file, you can then repeatedly invoke it in its original form
or modified, without retyping it on the command line.

Example 2−3. wrapper

#!/bin/bash

This is a simple script
that removes blank lines
from a file.
No argument checking.

Same as
sed −e '/^$/d $1' filename
invoked from the command line.

sed −e /^$/d $1
'^' is beginning of line,
'$' is end,
and 'd' is delete.

Example 2−4. A slightly more complex script wrapper

#!/bin/bash

"subst", a script that substitutes one pattern for
another in a file,
i.e., "subst Smith Jones letter.txt".

if [$# −ne 3]
Test number of arguments to script
(always a good idea).
then
 echo "Usage: `basename $0` old−pattern new−pattern filename"
 exit 1
fi

old_pattern=$1
new_pattern=$2

if [−f $3]
then
 file_name=$3
else
 echo "File \"$3\" does not exist."
 exit 2
fi

Here is where the heavy work gets done.
sed −e "s/$old_pattern/$new_pattern/" $file_name
's' is, of course, the substitute command in sed,
and /pattern/ invokes address matching.
Read the literature on 'sed' for a more

2.2. Shell wrapper, self−executing script 8

in−depth explanation.

exit 0
Successful invocation of the script returns 0.

Exercise. Write a shell script that performs a simple task.

Advanced Bash−Scripting HOWTO

2.2. Shell wrapper, self−executing script 9

Chapter 3. Tutorial / Reference

Your (manu)script is both good and original, but the part that is good is not original and
the part that is original is not good.

−−Samuel Johnson

Chapter 3. Tutorial / Reference 10

3.1. exit and exit status
The exit command may be used to terminate a script, as in a C program It may also return a value, which can
be read by the shell.

Every command returns an exit status (sometimes referred to as a return status). A successful command
returns a 0, while an unsuccessful one returns a non−zero value that usually may be interpreted as an error
code.

Likewise, functions within a script and the script itself return an exit status. The last command executed in
the function or script determines the exit status. Within a script, an exit nn command may be used to
deliver an nn exit status to the shell (nn must be a decimal number in the 0 − 255 range).

$? reads the exit status of script or function

Example 3−1. exit / exit status

#!/bin/bash

echo hello
echo $?
exit status 0 returned
because command successful.

lskdf
bad command
echo $?
non−zero exit status returned.

echo

exit 143
Will return 143 to shell.
To verify this, type $? after script terminates.

By convention, an 'exit 0' shows success,
while a non−zero exit value indicates an error.

3.1. exit and exit status 11

3.2. Special characters used in shell scripts

#

Comments. Lines beginning with a # (with the exception of #!) are comments.

This line is a comment.

Comments may also occur at the end of a command.

echo "A comment will follow." # Comment here.

Comments may also follow white space at the beginning of a line.

A tab precedes this comment.

;

Command separator. Permits putting two or more commands on the same line
echo hello; echo there

Note that the ; sometimes needs to be escaped (\).

.

"dot" command. Equivalent to source, explained further on

:

null command. Exit status 0, alias for true, see below
Endless loop:
while :
do
 operation−1
 operation−2
 ...
 operation−n
done

Placeholder in if/then test:
if condition
then : # Do nothing and branch ahead
else
 take−some−action
fi

Evaluate string of variables using "parameter substitution" (explained later on):
: ${HOSTNAME?} ${USER?} ${MAIL?}

Prints error message if one or more of essential environmental variables not set.

${}

Parameter substitution.

${parameter−default}

If parameter not set, use default

3.2. Special characters used in shell scripts 12

${parameter=default}

If parameter not set, set it to default

${parameter+otherwise}

If parameter set, use 'otherwise", else use null string

${parameter?err_msg}

If parameter set, use it, else print err_msg

Example 3−2. Using param substitution and :

#!/bin/bash

: ${HOSTNAME?} {USER?} {MAIL?}
 echo $HOSTNAME
 echo $USER
 echo $MAIL
 echo Critical env. variables set.

exit 0

Parameter substitution and/or expansion. The following are the equivalent of match in expr string
operations (see below). These are used mostly in parsing file path names.

${var#pattern}, ${var##pattern}

Strip off shortest/longest part of pattern if it matches the front end of variable.

${var%pattern}, ${var%%pattern}

Strip off shortest/longest part of pattern if it matches the back end of variable.

Version 2 of bash adds additional options.

${var:pos}

variable var expanded, starting from offset pos.

${var:pos:len}

expansion to a max of len characters of variable var, from offset pos.

${var/patt/replacement}

first match of pattern, within var replaced with replacement.

Advanced Bash−Scripting HOWTO

3.2. Special characters used in shell scripts 13

${var//patt/replacement}

all matches of pattern, within var replaced with replacement.

Example 3−3. Using pattern matching to parse arbitrary strings

#!/bin/bash

var1=abcd−1234−defg
echo "var1 = $var1"

t=${var1#*−*}
echo "var1 (with everything, up to and including first − stripped out) = $t"
t=${var1%*−*}
echo "var1 (with everything from the last − on stripped out) = $t"

echo

path_name=/home/bozo/ideas/thoughts.for.today
echo "path_name = $path_name"
t=${path_name##/*/}
Same effect as t=`basename $path_name`
echo "path_name, stripped of prefixes = $t"
t=${path_name%/*.*}
Same effect as t=`dirname $path_name`
echo "path_name, stripped of suffixes = $t"

echo

t=${path_name:11}
echo "$path_name, with first 11 chars stripped off = $t"
t=${path_name:11:5}
echo "$path_name, with first 11 chars stripped off, length 5 = $t"

echo

t=${path_name/bozo/clown}
echo "$path_name with bozo replaced = $t"
t=${path_name//o/O}
echo "$path_name with all o's capitalized = $t"

exit 0

()

command group.
(a=hello; echo $a)

{}

block of code. This, in effect, creates an anonymous function.
The code block enclosed in braces may have I/O redirected to and from it.
Example 3−4. Code blocks and I/O redirection
#!/bin/bash

{
read fstab
} 60; /etc/fstab

echo "First line in /etc/fstab is:"
echo "$fstab"

exit 0

/{}

Advanced Bash−Scripting HOWTO

3.2. Special characters used in shell scripts 14

file pathname. Mostly used in 'find' constructs.

>>><&

redirection.
scriptname >filename redirects the output of scriptname to file filename. If
filename already existed, it is overwritten.
command >&2 redirects output of command to stderr.
scriptname >>filename appends the output of scriptname to file filename. If
filename already existed, the output of the script will be added at the end of the file.

<<

redirection used in "here document". See below.

|

pipe. Passes the output of previous command to next one, or to shell.
echo ls −l | sh

cat *.lst | sort | uniq sorts the output of all the .lst files and deletes duplicate lines.

>|

force redirection (even if noclobber environmental variable is in effect). This will forcibly
overwrite an existing file.

−

redirection from/to stdin or stdout.
(cd /source/directory 38;38; tar cf − .) | (cd /dest/directory 38;38; tar xvfp −)
Move entire file tree from one directory to another
[courtesy Alan Cox, a.cox@swansea.ac.uk]
bunzip2 linux−2.2.15.tar.bz2 | tar xvf −
−−uncompress tar file−− | −−then pass it to "tar"−−
If "tar" has not been patched to handle "bunzip2",
this needs to be done in two discrete steps, using a pipe.
The purpose of the exercise is to unarchive "bzipped" kernel source.

White space

functions as a separator, separating commands or variables. White space consists of either
spaces, tabs, blank lines, or any combination thereof. In some contexts, such as variable assignment,
white space is not permitted, and results in a syntax error.

Blank lines

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections of the script.

Advanced Bash−Scripting HOWTO

3.2. Special characters used in shell scripts 15

3.3. Variables

$

variable substitution. $variable is a reference to the value of the variable. Variables will always begin
with $, except when assigned (or at the head of a loop). Note that enclosing a referenced value in double
quotes (" ") does not interfere with the variable substitution, but enclosing it in single quotes (' ') causes the
variable name to be used literally, and no substitution will take place.

Note that $variable is actually a simplified alternate form of ${variable}. In complex cases where
the $variable syntax causes an error, the longer form may work.

Example 3−5. Variable substitution

#!/bin/bash

a=37.5
hello=$a
No space permitted on either side of = sign.

echo hello

echo $hello
echo ${hello} #Identical as above.

echo "$hello"
echo "${hello}"

echo '$hello'
Variable referencing disabled by single quotes.

Notice the effect of different
types of quoting.

exit 0

Note that an uninitialized variable has a "null" value (no assigned value at all). Using a variable before
assigning a value to it will cause problems.

3.3. Variables 16

3.4. Quoting
Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special" if it has an
interpretation other than its literal meaning, such as the wild card character, *.)

When referencing a variable, it is generally advisable in enclose it in double quotes (" "). This preserves
spaces and special characters within the variable name, but still allows referencing it, that is, replacing the
variable with its value (see Example 3−5, above). Enclosing the arguments to an echo statement in double
quotes is usually a good practice.

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Special characters, such as $ are not translated, but interpreted literally. Consider
single quotes to be a stricter method of quoting than the double quotes.

Escaping is a method of quoting single characters. The escape (\) preceding a character will either toggle on
or turn off a special meaning for that character, depending on context.

\n

means newline

\r

means return

\t

means tab

\v

\vmeans vertical tab

\b

means backspace

\a

means "alert" (beep or flash)

\0xx

translates to the octal ASCII equivalent of 0xx
Use the −e option with 'echo' to print these.
echo −e "\v\v\v\v" # Prints 4 vertical tabs.
echo −e "\042" # Prints " (quote).

\"

3.4. Quoting 17

 gives the quote its literal meaning

\$

gives the dollar sign its literal meaning (variable name following \$ will not be referenced)
echo "\$variable01" # results in $variable01

The escape also provides a means of writing a multi−line command. Normally, each separate line constitutes
a different command, but an escape at the end of a line continues the command sequence onto the next line.

(cd /source/directory 38;38; tar cf − .) | \
(cd /dest/directory 38;38; tar xvfp −)
Repeating Alan Cox's directory tree copy command,
but split into two lines for increased legibility.

Advanced Bash−Scripting HOWTO

3.4. Quoting 18

3.5. Tests
The if/then construct tests whether a condition is true, and if so, executes one or more commands. Note that
in this context, 0 (zero) will evaluate as true, as will Why?

Example 3−6. What is truth?

#!/bin/bash

if [0]
#zero
then
 echo "0 is true."
else
 echo "0 is false."
fi

if []
#NULL (empty condition)
then
 echo "NULL is true."
else
 echo "NULL is false."
fi

if [xyz]
#string
then
 echo "Random string is true."
else
 echo "Random string is false."
fi

if [$xyz]
#string
then
 echo "Undeclared variable is true."
else
 echo "Undeclared variable is false."
fi

exit 0

Exercise. Explain the behavior of Example 3−6, above.

if [condition−true]
then
 command 1
 command 2
 ...
else
 # Optional (may be left out if not needed).
 # Adds default code block executing if original condition
 # tests false.
 command 3
 command 4
 ...
fi

3.5. Tests 19

Add a semicolon when 'if' and 'then' are on same line.

if [−x filename]; then

elif

 This is a contraction for else if. The effect is to nest an inner if/then construction within an
outer one.
if [condition]
then
 command
 command
 command
elif
Same as else if
then
 command
 command
else
 default−command
fi

The test condition−true construct is the exact equivalent of if [condition−true]. The left
bracket [is, in fact, an alias for test. (The closing right bracket] in a test should not therefore be strictly
necessary, however newer versions of bash detect it as a syntax error and complain.)

Example 3−7. Equivalence of [] and test

#!/bin/bash

echo

if test −z $1
then
 echo "No command−line arguments."
else
 echo "First command−line argument is $1."
fi

Both code blocks are functionally identical.

if [−z $1]
if [−z $1
also works, but outputs an error message.
then
 echo "No command−line arguments."
else
 echo "First command−line argument is $1."
fi

echo

exit 0

3.5.1. File test operators

Returns true if...

−e

Advanced Bash−Scripting HOWTO

3.5.1. File test operators 20

file exists.

−f

file is a regular file.

−s

file is not zero size.

−d

file is a directory.

−r

file is readable (has read permission).

−w

file has write permission.

−x

file has execute permission.

−g

group−id flag set on file.

−u

user−id flag set on file.

−O

you are owner of file

−G

gid of file same as yours

f1 −nt f2

file f1 is newer than f2

f1 −ot f2

file f1 is older than f2

Advanced Bash−Scripting HOWTO

3.5.1. File test operators 21

!"not", reverses the sense of the tests above (returns true if condition absent).

Example 3−8. Tests, command chaining, redirection

#!/bin/bash

This line is a comment.

filename=sys.log

if [! −f $filename]
then
 touch $filename; echo "Creating file."
else
 cat /dev/null 62; $filename; echo "Cleaning out file."
fi

Of course, /var/log/messages must have
world read permission (644) for this to work.
tail /var/log/messages 62; $filename
echo "$filename contains tail end of system log."

exit 0

3.5.2. Comparison operators (binary)

integer comparison

−eq

is equal to ($a −eq $b)

−ne

is not equal to ($a −ne $b)

−gt

is greater than ($a −gt $b)

−ge

is greater than or equal to ($a −ge $b)

−lt

is less than ($a −lt $b)

−le

is less than or equal to ($a −le $b)

Advanced Bash−Scripting HOWTO

3.5.2. Comparison operators (binary) 22

string comparison

=

is equal to ($a = $b)

!=

is not equal to ($a != $b)

−z

string is "null", that is, has zero length

−n

string in not "null". Note that this test does not work reliably (a bash bug?). Use !
−z instead.

Example 3−9. arithmetic and string comparisons

#!/bin/bash

a=4
b=5

Here a and b can be treated either as integers or strings.
There is some blurring between the arithmetic and integer comparisons.
Be careful.

if [$a −ne $b]
then
 echo "$a is not equal to $b"
 echo "(arithmetic comparison)"
fi

echo

if [$a != $b]
then
 echo "$a is not equal to $b."
 echo "(string comparison)"
fi

echo

exit 0

Example 3−10. zmost

#!/bin/bash

#View gzipped files with 'most'

NOARGS=1

Advanced Bash−Scripting HOWTO

3.5.2. Comparison operators (binary) 23

if [$# = 0]
same effect as: if [−z $1]
then
 echo "Usage: `basename $0` filename" 62;38;2
 # Error message to stderr.
 exit $NOARGS
 # Returns 1 as exit status of script
 # (error code)
fi

filename=$1

if [! −f $filename]
then
 echo "File $filename not found!" 62;38;2
 # Error message to stderr.
 exit 2
fi

if [${filename##*.} != "gz"]
Using bracket in variable substitution.
then
 echo "File $1 is not a gzipped file!"
 exit 3
fi

zcat $1 | most

exit 0

Uses the file viewer 'most'
(similar to 'less')

Advanced Bash−Scripting HOWTO

3.5.2. Comparison operators (binary) 24

3.6. Operations

=

All−purpose assignment operator, which works for both arithmetic and string assignments.
var=27
category=minerals

May also be used in a string comparison test.
if [$string1 = $string2]
then
 command
fi

The following are normally used in combination with expr or let.

arithmetic operators

+

plus

−

minus

*

multiplication

/

division

%

modulo, or mod

+=

"plus−equal" (increment variable by a constant)
`expr $var+=5` results in var being incremented by 5.

−=

"minus−equal" (decrement variable by a constant)

*=

"times−equal" (multiply variable by a constant)
`expr $var*=4` results in var being multiplied by 4.

3.6. Operations 25

/=

"slash−equal" (divide variable by a constant)

The bitwise logical operators seldom make an appearance in shell scripts. Their chief use seems to be
manipulating and testing values read from ports or sockets. "Bit flipping" is more relevant to compiled
languages, such as C and C++, which run fast enough to permit its use on the fly.

<<

bitwise left shift (multiplies by 2 for each shift position)

<<=

"left−shift−equal"
let "var <<= 2" results in var left−shifted 2 bits (multiplied by 4)

>>

bitwise right shift (divides by 2 for each shift position)

>>=

"right−shift−equal" (inverse of <<=)

&

bitwise and

&=

"bitwise and−equal"

|

bitwise OR

|=

"bitwise OR−equal"

~

bitwise negate

!

bitwise NOT

Advanced Bash−Scripting HOWTO

3.6. Operations 26

^

bitwise XOR

^=

"bitwise XOR−equal"

relational tests

<

less than

>

greater than

<=

less than or equal to

>=

greater than or equal to

==

equal to (test)

!=

not equal to

&&

and (logical)
if [$condition1 38;38; $condition2]
if both condition1 and condition2 hold true...

||

or (logical)
if [$condition1 || $condition2]
if both condition1 or condition2 hold true...

Advanced Bash−Scripting HOWTO

3.6. Operations 27

3.7. Variables Revisited

Internal (builtin) variables

environmental variables affecting bash script behavior

$IFS

input field separator
This defaults to white space, but may be changed, for example, to parse a comma−separated
data file.

$HOME

home directory of the user (usually /home/username)

$PATH

path to binaries (usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.)
Note that the "working directory", ./, is usually omitted from the $PATH as a security
measure.

$PS1

prompt

$PS2

secondary prompt

$PWD

working directory (directory you are in at the time)

$EDITOR

the default editor invoked by a script, usually vi or emacs.

$BASH

the path to the bash binary itself, usually /bin/bash

$BASH_ENV

an environmental variable pointing to a bash startup file to be read when a script is invoked

$0, $1, $2, etc.

positional parameters (passed from command line to script, passed to a function, or set to a

3.7. Variables Revisited 28

variable)

$#

number of command line arguments or positional parameters

$$

process id of script, often used in scripts to construct temp file names

$?

exit status of command, function, or the script itself

$*

All of the positional parameters

$@

Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact,
without interpretation or expansion

$−

Flags passed to script

$!

PID of last job run in background

=

variable assignment (no space before & after)
Do not confuse this with == and −eq, which test, rather than assign!

Example 3−11. Variable Assignment

#!/bin/bash

#When is a variable "naked", i.e., lacking the '$' in front?

Assignment
a=879
echo $a

Assignment using 'let'
let a=16+5
echo $a

In a 'for' loop (really, a type of disguised assignment)
for a in 7 8 9 11

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 29

do
 echo $a
done

exit 0

Example 3−12. Variable Assignment, plain and fancy

#!/bin/bash

a=23
Simple case
echo $a
b=$a
echo $b

Now, getting a little bit fancier...

a=`echo Hello!`
Assigns result of 'echo' command to 'a'
echo $a

a=`ls −l`
Assigns result of 'ls −l' command to 'a'
echo $a

exit 0

Variable assignment using the $() mechanism (a newer method than using back quotes)

From /etc/rc.d/rc.local
R=$(cat /etc/redhat−release)
arch=$(uname −m)

local variables

variables visible only within a code block or function (see Section 3.16)

environmental variables

variables that affect the behavior of the shell and user interface, such as the path and the prompt
If a script sets environmental variables, they need to be "exported", that is, reported to the
environment itself. This is the function of the export command.

$0, $1, $2, $3, etc.

positional parameters ($0 is the name of the script itself)
Example 3−13. Positional Parameters
#!/bin/bash

echo

echo The name of this script is $0
Adds ./ for current directory
echo The name of this script is `basename $0`
Strip out path name info (see 'basename')

echo

if [$1]
then
 echo "Parameter #1 is $1"
 # Need quotes to escape #
fi

if [$2]
then
 echo "Parameter #2 is $2"
fi

if [$3]
then
 echo "Parameter #3 is $3"
fi

echo

exit 0

Some scripts can perform different operations, depending on which name they are invoked by. For
this to work, the script needs to check $0, the name it was invoked by. There also have to be
symbolic links present to all the alternate names of the same script.
Example 3−14. wh, whois domain name lookup
#!/bin/bash

Does a 'whois domain−name' lookup
on any of 3 alternate servers:
ripe.net, cw.net, radb.net

Place this script, named 'wh' in /usr/local/bin

Requires symbolic links:
ln −s /usr/local/bin/wh /usr/local/bin/wh−ripe
ln −s /usr/local/bin/wh /usr/local/bin/wh−cw
ln −s /usr/local/bin/wh /usr/local/bin/wh−radb

if [−z $1]
then
 echo "Usage: `basename $0` [domain−name]"
 exit 1
fi

case `basename $0` in
Checks script name and calls proper server
 "wh") whois $1@whois.ripe.net;;
 "wh−ripe") whois $1@whois.ripe.net;;
 "wh−radb") whois $1@whois.radb.net;;
 "wh−cw") whois $1@whois.cw.net;;
 *) echo "Usage: `basename $0` [domain−name]";;
esac

exit 0

Advanced Bash−Scripting HOWTO

3.7. Variables Revisited 30

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.
$1 <−−− $2, $2 <−−− $3, $3 <−−− $4, etc.
The old $1 disappears, but $0 does not change. If you use a large number of positional parameters to
a script, shift lets you access those past 10.
Example 3−15. Using shift
#!/bin/bash

Name this script something like shift000,
and invoke it with some parameters, for example
./shift000 a b c def 23 skidoo

Demo of using 'shift'
to step through all the positional parameters.

until [−z "$1"]
do
 echo −n "$1 "
 shift
done

echo
Extra line feed.

exit 0

3.7.1. Typing variables: declare or typeset

The declare or typeset keywords (they are exact synonyms) permit restricting the properties of variables.
This is a very weak form of the typing available in certain programming languages. The declare command is
not available in version 1 of bash.

−rreadonly

declare −r var1

(declare −r var1 works the same as readonly var1)
This is the rough equivalent of the C const type qualifier. An attempt to change the value of a
readonly variable fails with an error message.

−iinteger

declare −i var2

The script treats subsequent occurences of var2 as an integer. Note that certain arithmetic
operations are permitted for declared integer variables without the need for expr or let.

−aarray

declare −a indices

The variable indices will be treated as an array.

−ffunctions

declare −f # (no arguments)

A declare −f line within a script causes a listing of all the functions contained in that
script.

−xexport

declare −x var3

This declares a variable as available for exporting outside the environment of the script itself.

Example 3−16. Using declare to type variables

#!/bin/bash

declare −f
Lists the function below.

Advanced Bash−Scripting HOWTO

3.7.1. Typing variables: declare or typeset 31

func1 ()
{
echo This is a function.
}

declare −r var1=13.36
echo "var1 declared as $var1"
Attempt to change readonly variable.
var1=13.37
Generates error message.
echo "var1 is still $var1"

echo

declare −i var2
var2=2367
echo "var2 declared as $var2"
var2=var2+1
Integer declaration eliminates the need for 'let'.
echo "var2 incremented by 1 is $var2."
Attempt to change variable declared as integer
echo "Attempting to change var2 to floating point value, 2367.1."
var2=2367.1
results in error message, with no change to variable.
echo "var2 is still $var2"

exit 0

3.7.2. RANDOM: generate random integer

Example 3−17. Generating random numbers

#!/bin/bash

Prints different random integer
at each invocation.

a=$RANDOM
echo $a

exit 0

Advanced Bash−Scripting HOWTO

3.7.2. RANDOM: generate random integer 32

3.8. Loops

for (in)

This is the basic looping construct. It differs significantly from its C counterpart.
for [arg] in [list]
do
 command...
done
Note that list may contain wild cards.
Note further that if do is on same line as for, there needs to be a semicolon before list.
for [arg] in [list] ; do

Example 3−18. Simple for loops

#!/bin/bash

for planet in Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
do
 echo $planet
done

echo

Entire 'list' enclosed in quotes creates a single variable.
for planet in "Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto"
do
 echo $planet
done

exit 0

Omitting the in [list] part of a for loop causes the loop to operate on $#, the list of arguments given on
the command line to the script.

Example 3−19. Missing in [list] in a for loop

#!/bin/bash

Invoke both with and without arguments,
and see what happens.

for a
do
 echo $a
done

'in list' missing, therefore
operates on '$#'
(command−line argument list)

exit 0

3.8. Loops 33

Example 3−20. Using efax in batch mode

#!/bin/bash

if [$# −ne 2]
Check for proper no. of command line args.
then
 echo "Usage: `basename $0` phone# text−file"
 exit 1
fi

if [! −f $2]
then
 echo "File $2 is not a text file"
 exit 2
fi

Create fax formatted files from text files.
fax make $2

for file in $(ls $2.0*)
Concatenate the converted files.
Uses wild card in variable list.
do
 fil="$fil $file"
done

Do the work.
efax −d /dev/ttyS3 −o1 −t "T$1" $fil

exit 0

while

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
true.
while [condition]
do
 command...
done
As is the case with for/in loops, placing the do on the same line as the condition test requires a
semicolon.
while [condition] ; do
Note that certain specialized while loops, as, for example, a getopts construct, deviate somewhat
from the standard template given here.
Example 3−21. Simple while loop
#!/bin/bash

var0=0

while ["$var0" −lt 10]
do
 echo −n "$var0 "
 # −n suppresses newline.
 var0=`expr $var0 + 1`
 # var0=$(($var0+1)) also works.
done

echo

exit 0

Example 3−22. Another while loop
#!/bin/bash

while ["$var1" != end]
do
 echo "Input variable #1 "
 echo "(end to exit)"
 read var1
 # It's not 'read $var1'
 # because value of var1 is set.
 echo "variable #1 = $var1"
 # Need quotes because of #
done

Note: Echoes 'end' because
termination condition
tested for at top of loop.

exit 0

until

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
false (opposite of while loop).
until [condition−is−true]

Advanced Bash−Scripting HOWTO

3.8. Loops 34

do
 command...
done
Note that an until loop tests for the terminating condition at the top of the loop, differing from a
similar construct in some programming languages.
As is the case with for/in loops, placing the do on the same line as the condition test requires a
semicolon.
until [condition−is−true] ; do
Example 3−23. until loop
#!/bin/bash

until ["$var1" = end]
Tests condition at top of loop.
do
 echo "Input variable #1 "
 echo "(end to exit)"
 read var1
 echo "variable #1 = $var1"
done

exit 0

break, continue

The break and continue loop control commands correspond exactly to their counterparts in other
programming languages. The break command terminates the loop (breaks out of it), while
continue causes a jump to the next iteration of the loop, skipping all the remaining commands in that
particular loop cycle.
Example 3−24. Effects of break and continue in a loop
#!/bin/bash

echo
echo Printing Numbers 1 through 20.

a=0

while [$a −le 19]

do
 a=$(($a+1))

 if [$a −eq 3] || [$a −eq 11]
 # Excludes 3 and 11
 then
 continue
 # Skip rest of this particular loop iteration.
 fi

 echo −n "$a "
done

Exercise for reader:
Why does loop print up to 20?

echo
echo

echo Printing Numbers 1 through 20, but something happens after 2.

##

Same loop, but substituting 'break' for 'continue'.

a=0

while [$a −le 19]
do
 a=$(($a+1))

 if [$a −gt 2]
 then
 break
 # Skip entire rest of loop.
 fi

 echo −n "$a "
done

echo
echo

exit 0

case (in) / esac

The case construct is the shell equivalent of switch in C/C++. It permits branching to one of a
number of code blocks, depending on condition tests. It serves as a kind of shorthand for multiple
if/then/else statements and is an appropriate tool for creating menus.
case "$variable" in
 "$condition1")
 command...
 ;;
 "$condition2")
 command...
 ;;
 esac
Note:
Quoting the variables is recommended.
Each test line ends with a left paren).
Each condition block ends with a double semicolon ;;.
The entire case block terminates with an esac (case spelled backwards).
Example 3−25. Using case
#!/bin/bash

echo
echo "Hit a key, then hit return."
read Keypress

case "$Keypress" in
 [a−z]) echo "Lowercase letter";;
 [A−Z]) echo "Uppercase letter";;
 [0−9]) echo "Digit";;
 *) echo "Punctuation, whitespace, or other";;
esac
Allows ranges of characters in [square brackets].

exit 0

Example 3−26. Creating menus using case
#!/bin/bash

Crude rolodex−type database

clear
Clear the screen.

echo " Contact List"
echo " −−−−−−− −−−−"
echo "Choose one of the following persons:"
echo
echo "[E]vans, Roland"
echo "[J]ones, Mildred"
echo "[Smith], Julie"
echo "[Z]ane, Morris"
echo

read person

case "$person" in
Note variable is quoted.

 "E" | "e")
 # Accept upper or lowercase input.
 echo
 echo "Roland Evans"
 echo "4321 Floppy Dr."
 echo "Hardscrabble, CO 80753"
 echo "(303) 734−9874"
 echo "(303) 734−9892 fax"
 echo "revans@zzy.net"
 echo "Business partner 38; old friend"
 ;;
Note double semicolon to terminate
each option.

 "J" | "j")
 echo
 echo "Mildred Jones"
 echo "249 E. 7th St., Apt. 19"
 echo "New York, NY 10009"
 echo "(212) 533−2814"
 echo "(212) 533−9972 fax"
 echo "milliej@loisaida.com"
 echo "Girlfriend"
 echo "Birthday: Feb. 11"
 ;;

Add info for Smith 38; Zane later.

 *)
 # Default option.	
 echo
 echo "Not yet in database."
 ;;

esac

echo

exit 0

select

The select construct, adopted from the Korn Shell, is yet another tool for building menus.
selectvariable [in list]
do
 command...
 break
done

Advanced Bash−Scripting HOWTO

3.8. Loops 35

This prompts the user to enter one of the choices presented in the variable list. Note that select uses
the PS3 prompt (#?) by default, but that this may be changed.
Example 3−27. Creating menus using select
#!/bin/bash

PS3='Choose your favorite vegetable: '
Sets the prompt string.

echo

select vegetable in "beans" "carrots" "potatoes" "onions" "rutabagas"
do
 echo
 echo "Your favorite veggie is $vegetable."
 echo "Yuck!"
 echo
 break
 # if no 'break' here, keeps looping forever.
done

exit 0

If in list is omitted, then select uses the list of command line arguments ($@) passed to the script
or to the function in which the select construct is embedded. (Compare this to the behavior of a
forvariable [in list] construct with the in list omitted.)
Example 3−28. Creating menus using select in a function
#!/bin/bash

PS3='Choose your favorite vegetable: '

echo

choice_of()
{
select vegetable
[in list] omitted, so 'select' uses arguments passed to function.
do
 echo
 echo "Your favorite veggie is $vegetable."
 echo "Yuck!"
 echo
 break
done
}

choice_of beans rice carrots radishes tomatoes spinach
$1 $2 $3 $4 $5 $6
passed to choice_of() function

exit 0

Advanced Bash−Scripting HOWTO

3.8. Loops 36

3.9. Internal Commands and Builtins
A builtin is a command contained in the bash tool set, literally built in.

getopts

This powerful tool parses command line arguments passed to the script. This is the bash
analog of the getopt library function familiar to C programmers. It permits passing and
concatenating multiple flags[1] and options to a script (for example scriptname −abc
−e /usr/local).
The getopts construct uses two implicit variables. $OPTIND is the argument pointer
(OPTion INDex) and $OPTARG (OPTion ARGumnet) the (optional) argument attached to a
flag. A colon following the flag name in the declaration tags that flag as having an option.
A getopts construct usually comes packaged in a while loop, which processes the flags and
options one at a time, then decrements the implicit $OPTIND variable to step to the next.

Note:

1.
The arguments must be passed from the command line to the script preceded by a
minus (−) or a plus (+), else getopts will not process them, and will, in fact,
terminate option processing at the first argument encountered lacking these modifiers.

2.
The getopts template differs slightly from the standard while loop, in that it lacks
condition brackets.

3.
The getopts construct replaces the obsolete getopt command.

while getopts ":abcde:fg" Option
Initial declaration.
a, b, c, d, e, f, and g are the flags expected.
The : after flag 'e' shows it will have an option passed with it.
do
 case $Option in
 a) # Do something with variable 'a'.
 b) # Do something with variable 'b'.
 ...
 e) # Do something with 'e', and also with $OPTARG,
 # which is the associated argument passed with 'e'.
 ...
 g) # Do something with variable 'g'.
 esac
done
shift $(($OPTIND − 1))
Move argument pointer to next.

3.9. Internal Commands and Builtins 37

All this is not nearly as complicated as it looks 60;grin62;.

Example 3−29. Using getopts to read the flags/options passed to a script

#!/bin/bash

'getopts' processes command line args to script.

Usage: scriptname −options
Note: dash (−) necessary

Try invoking this script with
'scriptname −mn'
'scriptname −oq qOption'
(qOption can be some arbitrary string.)

OPTERROR=33

if [−z $1]
Exit and complain if no argument(s) given.
then
 echo "Usage: `basename $0` options (−mnopqrs)"
 exit $OPTERROR
fi

while getopts ":mnopq:rs" Option
do
 case $Option in
 m) echo "Scenario #1: option −m−";;
 n | o) echo "Scenario #2: option −$Option−";;
 p) echo "Scenario #3: option −p−";;
 q) echo "Scenario #4: option −q−, with argument \"$OPTARG\"";;
 # Note that option 'q' must have an additional argument,
 # otherwise nothing happens.
 r | s) echo "Scenario #5: option −$Option−"'';;
 *) echo "Unimplemented option chosen.";;
 esac
done

shift $(($OPTIND − 1))
Decrements the argument pointer
so it points to next argument.

exit 0

exit

Unconditionally terminates a script. The exit command may optionally take an integer argument,
which is returned to the shell as the exit status of the script. It is a good practice to end all but the
simplest scripts with an exit 0, indicating a successful run.

set

The set command changes the value of internal script variables. One use for this is to toggle flags
which help determine the behavior of the script (see Section 3.22). Another application for it is to
reset the positional parameters that a script sees as the result of a command (set `command`).
The script can then parse the fields of the command output.

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 38

Example 3−30. Using set with positional parameters
#!/bin/bash

script "set−test"

Invoke this script with three command line parameters,
for example, "./set−test one two three".

echo
echo "Positional parameters before set \`uname −a\` :"
echo "Command−line argument #1 = $1"
echo "Command−line argument #2 = $2"
echo "Command−line argument #3 = $3"

echo

set `uname −a`
Sets the positional parameters to the output
of the command `uname −a`

echo "Positional parameters after set \`uname −a\` :"
$1, $2, $3, etc. reinitialized to result of `uname −a`
echo "Field #1 of 'uname −a' = $1"
echo "Field #2 of 'uname −a' = $2"
echo "Field #3 of 'uname −a' = $3"
echo

exit 0

unset

The unset command deletes an internal script variable. It is a way of negating a previous set. Note
that this command does not affect positional parameters.

readonly

Same as declare −r, sets a variable as read−only, or, in effect, as a constant. Attempts to change
the variable fail with an error message. This is the shell analog of the C language const type qualifier.

basename

Strips the path information from a file name, printing only the file name. The construction
basename $0 lets the script know its name, that is, the name it was invoked by. This can be used
for "usage" messages if, for example a script is called with missing arguments:
echo "Usage: `basename $0` arg1 arg2 ... argn"

dirname

Strips the basename from a file name, printing only the path information.
Note: basename and dirname can operate on any arbitrary string. The filename given as an
argument does not need to refer to an existing file.
Example 3−31. basename and dirname
#!/bin/bash

a=/home/heraclius/daily−journal.txt

echo "Basename of /home/heraclius/daily−journal.txt = `basename $a`"
echo "Dirname of /home/heraclius/daily−journal.txt = `dirname $a`"

exit 0

read

"Reads" the value of a variable from stdin, that is, interactively fetches input from the keyboard. The
−a option lets read get array variables (see Example 3−63).
Example 3−32. Variable assignment, using read
#!/bin/bash

echo −n "Enter the value of variable 'var1': "
−n option to echo suppresses newline

read var1
Note no '$' in front of var1,
since it is being set.

echo "var1 = $var1"

exit 0

true

A command that returns a successful (zero) exit status, but does nothing else.
Endless loop
while true
alias for :
do
 operation−1
 operation−2
 ...
 operation−n
 # Need a way to break out of loop.
done

false

A command that returns an unsuccessful exit status, but does nothing else.
Null loop
while false
do
 # The following code will not execute.
 operation−1
 operation−2
 ...
 operation−n
 # Nothing happens!
done

factor

Factor an integer into prime factors.
bash$ factor 27417R7417: 3 13 19 37
	

hash [cmds]

Advanced Bash−Scripting HOWTO

3.9. Internal Commands and Builtins 39

Record the path name of specified commands (in the shell hash table), so the shell or script will not
need to search the $PATH on subsequent calls to those commands. When hash is called with no
arguments, it simply lists the commands that have been hashed.

pwd

Print Working Directory. This gives the user's (or script's) current directory.

pushd, popd, dirs

This command set is a mechanism for bookmarking working directories, a means of moving back
and forth through directories in an orderly manner. A pushdown stack is used to keep track of
directory names. Options allow various manipulations of the directory stack.
pushd dir−name pushes the path dir−name onto the directory stack and simultaneously
changes the current working directory to dir−name
popd removes (pops) the top directory path name off the directory stack and simultaneously changes
the current working directory to that directory popped from the stack.
dirs lists the contents of the directory stack. A successful pushd or popd will automatically invoke
dirs.
Scripts that require various changes to the current working directory without hard−coding the
directory name changes can make good use of these commands. Note that the implicit
DIRSTACK array variable, accessible from within a script, holds the contents of the directory stack.
Example 3−33. Changing the current working directory
#!/bin/bash

dir1=/usr/local
dir2=/var/spool

pushd $dir1
Will do an automatic 'dirs'
(list directory stack to stdout).
echo "Now in directory `pwd`."
Uses back−quoted 'pwd'.
Now, do some stuff in directory 'dir1'.
pushd $dir2
echo "Now in directory `pwd`."
Now, do some stuff in directory 'dir2'.
echo "The top entry in the DIRSTACK array is $DIRSTACK."
popd
echo "Now back in directory `pwd`."
Now, do some more stuff in directory 'dir1'.
popd
echo "Now back in original working directory `pwd`."

exit 0

source, . (dot command), dirs

This command, when invoked from the command line, executes a script. Within a script, a source
file−name loads the file file−name. This is the shell scripting equivalent of a C/C++
#include directive. It is useful in situations when multiple scripts use a common data file or
function library.
Example 3−34. "Including" a data file
#!/bin/bash

Load a data file.
. data−file
Same effect as "source data−file"

Note that the file "data−file", given below
must be present in working directory.

Now, reference some data from that file.

echo "variable1 (from data−file) = $variable1"
echo "variable3 (from data−file) = $variable3"

let "sum = $variable2 + $variable4"
echo "Sum of variable2 + variable4 (from data−file) = $sum"
echo "message1 (from data−file) is \"$message1\""
Note: escaped quotes

print_message This is the message−print function in the data−file.

exit 0

File data−file for Example 3−34, above. Must be present in same directory.
This is a data file loaded by a script.
Files of this type may contain variables, functions, etc.
It may be loaded with a 'source' or '.' command by a shell script.

Let's initialize some variables.

variable1=22
variable2=474
variable3=5
variable4=97

message1="Hello, how are you?"
message2="Enough for now. Goodbye."

print_message ()
{
Echoes any message passed to it.

 if [−z $1]
 then
 return 1
 # Error, if argument missing.
 fi

 echo

 until [−z "$1"]
 do
 # Step through arguments passed to function.
 echo −n "$1"
 # Echo args one at a time, suppressing line feeds.
 echo −n " "
 # Insert spaces between words.
 shift
 # Next one.
 done

 echo

 return 0
}

3.9.1. Job Control Commands

wait

Stop script execution until all jobs running in background have terminated, or until the job
number specified as an option terminates.

Example 3−35. Waiting for a process to finish before proceeding

#!/bin/bash

if [−z $1]

Advanced Bash−Scripting HOWTO

3.9.1. Job Control Commands 40

then
 echo "Usage: `basename $0` find−string"
 exit 1
fi

echo "Updating 'locate' database..."
echo "This may take a while."
updatedb /usr 38;
Must be run as root.

wait
Don't run the rest of the script
until 'updatedb' finished.
In this case, you want the the database updated
before looking up the file name.

locate $1

exit 0

suspend

This has the same effect as Control−Z, pausing a foreground job.

stop

This has the same effect as suspend, but for a background job.

disown

Remove job(s) from the shell's table of active jobs.

jobs

Lists the jobs running in the background, giving the job number. Not as useful as ps.

times

Gives statistics on the system time used in executing commands, in the following form:
0m0.020s 0m0.020s This capability is of very limited value, since it is uncommon to profile and
benchmark shell scripts.

kill

Forcibly terminate a process. Note that kill −l lists all the "signals".

Advanced Bash−Scripting HOWTO

3.9.1. Job Control Commands 41

3.10. External Filters, Programs and Commands
This is a descriptive listing of standard UNIX commands useful in shell scripts.

ls

The basic file "list" command. It is all too easy to underestimate the power of this humble
command. For example, using the −R, recursive option, ls provides a tree−like listing of a
directory structure.

Example 3−36. Using ls to create a table of contents for burning a CDR disk

#!/bin/bash

Script to automate burning a CDR.

Uses Joerg Schilling's "cdrecord" package
(http://www.fokus.gmd.de/nthp/employees/schilling/cdrecord.html)

If this script invoked as an ordinary user, need to suid cdrecord
(chmod u+s /usr/bin/cdrecord, as root).

if [−z $1]
then
 IMAGE_DIRECTORY=/opt
Default directory, if not specified on command line.
else
 IMAGE_DIRECTORY=$1
fi

ls −lR $IMAGE_DIRECTORY 62; $IMAGE_DIRECTORY/contents
echo "Creating table of contents."

mkisofs −r −o cdimage.iso $IMAGE_DIRECTORY
echo "Creating ISO9660 file system image (cdimage.iso)."

cdrecord −v −isosize speed=2 dev=0,0 cdimage.iso
Change speed parameter to speed of your burner.
echo "Burning the disk."
echo "Please be patient, this will take a while."

exit 0

chmod

Changes the attributes of a file.
chmod +x filename
Makes "filename" executable for all users.
chmod 644 filename
Makes "filename" readable/writable to owner, readable to
others
(octal mode).
chmod 1777 directory−name
Gives everyone read, write, and execute permission in directory,
however also sets the "sticky bit", which means that
only the directory owner can change files in the directory.

umask

Set the default file attributes (for a particular user).

3.10. External Filters, Programs and Commands 42

find

exec COMMAND
Carries out COMMAND on each file that find scores a hit on. COMMAND is followed by {} \; (the ; is
escaped to make certain the shell reads it literally and terminates the command sequence). This
causes COMMAND to bind to and act on the path name of the files found (see Example 3−53)

xargs

A filter for feeding arguments to a command, and also a tool for assembling the commands
themselves. It breaks a data stream into small enough chunks for filters and commands to process.
Consider it as a powerful replacement for backquotes. In situations where backquotes fail with a too
many arguments error, substituting xargs often works. Normally, xargs reads from 'stdin' or from a
pipe, but it can also be given the output of a file.
ls | xargs −p −l gzip gzips every file in current directory, one at a time, prompting before
each operation.
One of the more interesting xargs options is −n XX, which limits the number of arguments passed to
XX.
ls | xargs −n 8 echo lists the files in the current directory in 8 columns.
Example 3−37. Log file using xargs to monitor system log
#!/bin/bash

Generates a log file in current directory
from the tail end of /var/log messages.

Note: /var/log/messages must be readable by ordinary users
if invoked by same (#root chmod 755 /var/log/messages).

(date; uname −a) 62;62;logfile
Time and machine name
echo −−− 62;62;logfile
tail −5 /var/log/messages | xargs | fmt −s 62;62;logfile
echo 62;62;logfile
echo 62;62;logfile

exit 0

Example 3−38. copydir, copying files in current directory to another, using xargs
#!/bin/bash

Copy (verbose) all files in current directory
to directory specified on command line.

if [−z $1]
Exit if no argument given.
then
 echo "Usage: `basename $0` directory−to−copy−to"
 exit 1
fi

ls . | xargs −i −t cp ./{} $1
This is the exact equivalent of
cp * $1

exit 0

eval arg1, arg2, ...

Translates into commands the arguments in a list (useful for code generation within a script).
Example 3−39. Showing the effect of eval
#!/bin/bash

y=`eval ls −l`
echo $y

y=`eval df`
echo $y
Note that LF's not preserved

exit 0

Example 3−40. Forcing a log−off
#!/bin/bash

y=`eval ps ax | sed −n '/ppp/p' | awk '{ print $1 }'`
Finding the process number of 'ppp'

kill −9 $y
Killing it

Restore to previous state...

chmod 666 /dev/ttyS3
Doing a SIGKILL on ppp changes the permissions
on the serial port. Must be restored.

rm /var/lock/LCK..ttyS3
Remove the serial port lock file.

exit 0

expr arg1 operation arg2 ...

All−purpose expression evaluator: Concatenates and evaluates the arguments according to the
operation given (arguments must be separated by spaces). Operations may be arithmetic, comparison,
string, or logical.

expr 3 + 5

returns 8

expr 5 % 3

returns 2

y=`expr $y + 1`

incrementing variable, same as let y=y+1 and y=$(($y+1)), as discussed elsewhere

z=`expr substr $string28 $position $length`

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 43

Note that external programs, such as sed and Perl have far superior string parsing facilities, and it
might well be advisable to use them instead of the built−in bash ones.

Example 3−41. Using expr

#!/bin/bash

Demonstrating some of the uses of 'expr'
+++++++++++++++++++++++++++++++++++++++

echo

Arithmetic Operators

echo Arithmetic Operators
echo
a=`expr 5 + 3`
echo 5 + 3 = $a

a=`expr $a + 1`
echo
echo a + 1 = $a
echo \(incrementing a variable\)

a=`expr 5 % 3`
modulo
echo
echo 5 mod 3 = $a

echo
echo

Logical Operators

echo Logical Operators
echo

a=3
echo a = $a
b=`expr $a \62; 10`
echo 'b=`expr $a \62; 10`, therefore...'
echo "If a 62; 10, b = 0 (false)"
echo b = $b

b=`expr $a \60; 10`
echo "If a 60; 10, b = 1 (true)"
echo b = $b

echo
echo

Comparison Operators

echo Comparison Operators
echo
a=zipper
echo a is $a
if [`expr $a = snap`]
Force re−evaluation of variable 'a'
then

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 44

 echo "a is not zipper"
fi

echo
echo

String Operators

echo String Operators
echo

a=1234zipper43231
echo The string being operated upon is $a.
index: position of substring
b=`expr index $a 23`
echo Numerical position of first 23 in $a is $b.
substr: print substring, starting position 38; length specified
b=`expr substr $a 2 6`
echo Substring of $a, starting at position 2 and 6 chars long is $b.
length: length of string
b=`expr length $a`
echo Length of $a is $b.
'match' operations similarly to 'grep'
b=`expr match $a [0−9]*`
echo Number of digits at the beginning of $a is $b.
b=`expr match $a '\([0−9]*\)'`
echo The digits at the beginning of $a are $b.

echo

exit 0

Note that : can substitute for match. b=`expr $a : [0−9]*` is an exact equivalent of b=`expr
match $a [0−9]*` in the above example.

let

The let command carries out arithmetic operations on variables. In many cases, it functions as a less
complex version of expr.
Example 3−42. Letting let do some arithmetic.
#!/bin/bash

echo

let a=11
Same as 'a=11'
let a=a+5
Equivalent to let "a = a + 5"
(double quotes makes it more readable)
echo "a = $a"
let "a 60;60;= 3"
Equivalent of let "a = a 60;60; 3"
echo "a left−shifted 3 places = $a"

let "a /= 4"
Equivalent to let "a = a / 4"
echo $a
let "a −= 5"
Equivalent to let "a = a − 5"
echo $a
let "a = a * 10"
echo $a
let "a %= 8"
echo $a

exit 0

printf

The printf, formatted print, command is an enhanced echo. It is a limited variant of the C language
printf, and the syntax is somewhat different.
printfformat−string... parameter...
See the printf man page for in−depth coverage.
Note: Older versions of bash may not support printf.
Example 3−43. printf in action
#!/bin/bash

printf demo

PI=3.14159265358979
DecimalConstant=31373
Message1="Greetings,"
Message2="Earthling."

echo

printf "Pi to 2 decimal places = %1.2f" $PI
echo
printf "Pi to 9 decimal places = %1.9f" $PI
Note correct round off.

printf "\n"
Prints a line feed, equivalent to 'echo'.

printf "Constant = \t%d\n" $DecimalConstant
Insert tab (\t)

printf "%s %s \n" $Message1 $Message2

echo

exit 0

at

The at job control command executes a given set of commands at a specified time. This is a user
version of cron.

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 45

at 2pm January 15 prompts for a set of commands to execute at that time.
Using the −f option, at reads a command list from a file, which can be useful in a non−interactive
script.

ps

Lists currently executing jobs by owner and process id. This is usually invoked with ax options, and
may be piped to grep to search for a specific process.
ps ax | grep sendmail results in:
295 ? S 0:00 sendmail: accepting connections on port 25

batch

The batch job control command is similar to at, but it runs a command list when the system load
drops below .8. Like at, it can read commands from a file with the −f option.

sleep

This is the shell equivalent of a wait loop. It pauses for a specified number of seconds, doing nothing.
This can be useful for timing or in processes running in the background, checking for a specific event
every so often.
sleep 3
Pauses 3 seconds.

dd

This is the somewhat obscure and much feared "data duplicator" command. It simply copies a file (or
stdin/stdout), but with conversions. Possible conversions are ASCII/EBCDIC, upper/lower case,
swapping of byte pairs between input and output, and skipping and/or truncating the head or tail of
the input file. A dd −−help lists the conversion and other options that this powerful utility takes.
The dd command can copy raw data and disk images to and from devices, such as floppies. It can
even be used to create boot floppies.
dd if=kernel−image of=/dev/fd0H1440 One important use for dd is initializing temporary swap
files (see Example 3−69).

sort

File sorter, often used as a filter in a pipe. See the man page for options.

diff

Simple file comparison utility. The files must be sorted (this may, if necessary be accomplished by
filtering the files through sort before passing them to diff). diff file−1 file−2 outputs the
lines in the files that differ, with carets showing which file each particular line belongs to. A common
use for diff is to generate difference files to be used with patch (see below). The −e option outputs
files suitable for ed or ex scripts.
patch −p1 60;patch−file
Takes all the changes listed in 'patch−file' and applies them
to the files referenced therein.

cd /usr/src
gzip −cd patchXX.gz | patch −p0
Upgrading kernel source using 'patch'.
From the Linux kernel docs "README",
by anonymous author (Alan Cox?).

comm

Versatile file comparison utility. The files must be sorted for this to be useful.
comm −optionsfirst−filesecond−file

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 46

comm file−1 file−2 outputs three columns:
column 1 = lines unique to file−1
column 2 = lines unique to file−2
column 3 = lines common to both.
The options allow suppressing output of one or more columns.
−1 suppresses column 1
−2 suppresses column 2
−3 suppresses column 3
−12 suppresses both columns 1 and 2, etc.

uniq

This filter removes duplicate lines from a sorted file. It is often seen in a pipe coupled with sort.
cat list−1 list−2 list−3 | sort | uniq 62; final.list

expand

A filter than converts tabs to spaces, often seen in a pipe.

cut

A tool for extracting fields from files. It is similar to the print $N command set in awk, but more
limited. It may be simpler to use cut in a script than awk. Particularly important are the
−d (delimiter) and −f (field specifier) options.
Using cut to obtain a listing of the mounted filesystems:
cat /etc/mtab | cut −d ' ' −f1,2

Using cut to list the OS and kernel version:
uname −a | cut −d" " −f1,3,11,12

cut −d ' ' −f2,3 filename is equivalent to awk '{ print $2, $3 }' filename

colrm

Column removal filter. This removes columns (characters) from a file and writes them, lacking the
specified columns, back to stdout. colrm 2 3 <filename removes the second and third
characters from each line of the text file filename.

paste

Tool for merging together different files into a single, multi−column file. In combination with cut,
useful for creating system log files.

join

Consider this a more flexible version of paste. It works on exactly two files, but permits specifying
which fields to paste together, and in which order.

cpio

This specialized archiving copy command is rarely used any more, having been supplanted by
tar/gzip. It still has its uses, such as moving a directory tree.
Example 3−44. Using cpio to move a directory tree

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 47

#!/bin/bash

Copying a directory tree using cpio.

if [$# −ne 2]
then
 echo Usage: `basename $0` source destination
 exit 1
fi

source=$1
destination=$2

find "$source" −depth | cpio −admvp "$destination"

exit 0

cd

The familiar cd change directory command finds use in scripts where execution of a command
requires being in a specified directory.
(cd /source/directory 38;38; tar cf − .) | (cd /dest/directory 38;38; tar xvfp −) [from
the previously cited example by Alan Cox]

touch

Utility for updating access/modification times of a file to current system time or other specified time,
but also useful for creating a new file. The command touch zzz will create a new file of zero
length, named zzz, assuming that zzz did not previously exist.

split

Utility for splitting a file into smaller chunks. Usually used for splitting up large files in order to back
them up on floppies or preparatory to e−mailing or uploading them.

rm

Delete (remove) a file or files. When used with the recursive flag −r, this removes files all the way
down the directory tree (very dangerous!).

ln

Creates links to pre−existings files. Most often used with the −s, symbolic or "soft" link flag. This
permits referencing the linked file by more than one name and is a superior alternative to aliasing.

cp

This is the file copy command. cp file1 file2 copies file1 to file2, overwriting file2 if
it already exists.

mv

This is the file move command. It is equivalent to a combination of cp and rm. It may be used to
move multiple files to a directory.

rcp

"Remote copy", copies files between two different networked machines. Using rcp and similar
utilities with security implications in a shell script may not be advisable. Consider instead, using an
expect script.

yes

In its default behavior the yes command feeds a continuous string of the character y followed by a
line feed to stdout. A control−c terminates the run. A different output string may be specified, as in
yes different string, which would continually output different string to stdout.

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 48

One might well ask the purpose of this. From the command line or in a script, the output of yes can
be redirected or piped into a program expecting user input. In effect, this becomes a sort of poor
man's version of expect.

echo

prints (to stdout) an expression or variable ($variable).
echo Hello
echo $a

Normally, each echo command prints a terminal newline, but the −n option suppresses this.

cat, tac

cat, an acronym for concatenate, lists a file to stdout. When combined with redirection (> or >>), it is
commonly used to concatenate files.
cat filename
cat file.1 file.2 file.3 62; file.123

tac, is the inverse of cat, listing a file backwards from its end.

head

lists the first 10 lines of a file to stdout.

tail

lists the last 10 lines of a file to stdout. Commonly used to keep track of changes to a system logfile,
using the −f option, which outputs lines appended to the file.

tee

[UNIX borrows an idea here from the plumbing trade.]
This is a redirection operator, but with a difference. Like the plumber's tee, it permits "siponing
off" the output of a command or commands within a pipe, but without affecting the result. This is
useful for printing an ongoing process to a file or paper, perhaps to keep track of it for debugging
purposes.
 tee
 |−−−−−−62; to file
 |
 ===============|===============
 command−−−62;−−−−|−operator−−62;−−−62; result of command(s)
 ===============================
	

cat listfile* | sort | tee check.file | uniq 62; result.file (The file
check.file contains the concatenated sorted "listfiles", before the duplicate lines are removed by
uniq.)

sed, awk

manipulation scripting languages in order to parse text and command output

sed

Non−interactive "stream editor", permits using many ex commands in batch mode.

awk

Programmable file extractor and formatter, good for manipulating and/or extracting fields (columns)
in text files. Its syntax is similar to C.

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 49

wc

wc gives a "word count" on a file or I/O stream.
%
wc /usr/doc/sed−3.02/READMER0 127 838 /usr/doc/sed−3.02/README
[20 lines 127 words 838 characters]

wc −w gives only the word count.
wc −l gives only the line count.
wc −c gives only the character count.
wc −L gives only the length of the longest line.

tr

character translation filter.
Note: must use quoting and/or brackets, as appropriate.
tr "A−Z" "*" <filename changes all the uppercase letters in filename to asterisks (writes
to stdout).
tr −d [0−9] <filename deletes all digits from the file filename.
Example 3−45. toupper: Transforms a file to all uppercase.
#!/bin/bash

Changes a file to all uppercase.

if [−z $1]
Standard check whether command line arg is present.
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

tr [a−z] [A−Z] 60;$1

exit 0

fold

A filter that wraps inputted lines to a specified width.

fmt

Simple−minded file formatter.

pr

Print formatting filter. This will paginate a file (or stdout) into sections suitable for hard copy
printing. A particularly useful option is −d, forcing double−spacing.
Example 3−46. Formatted file listing.
#!/bin/bash

Get a file listing...

b=`ls /usr/local/bin`

...40 columns wide.
echo $b | fmt −w 40

Could also have been done by
echo $b | fold − −s −w 40

exit 0

date

Simply invoked, date prints the date and time to stdout. Where this command gets interesting is in its
formatting and parsing options.
Example 3−47. Using date
#!/bin/bash

#Using the 'date' command

Needs a leading '+' to invoke formatting.

echo "The number of days since the year's beginning is `date +%j`."
%j gives day of year.

echo "The number of seconds elapsed since 01/01/1970 is `date +%s`."
%s yields number of seconds since "UNIX epoch" began,
but how is this useful?

prefix=temp
suffix=`eval date +%s`
filename=$prefix.$suffix
echo $filename
It's great for creating "unique" temp filenames,
even better than using $$.

Read the 'date' man page for more formatting options.

exit 0

time

Outputs very verbose timing statistics for executing a command.
time ls −l / gives something like this:
0.00user 0.01system 0:00.05elapsed 16%CPU (0avgtext+0avgdata 0maxresident)kPinputs+0outputs (149major+27minor)pagefaults 0swaps

grep

A multi−purpose file search tool that uses regular expressions. Originally a command/filter in the
ancient ed line editor, g/re/p, or global − regular expression − print.

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 50

greppattern [file...] search the files file, etc. for occurrences of pattern.
ls −l | grep '.txt' has the same effect as ls −l *.txt.

script

This utility records (saves to a file) all the user keystrokes at the command line in a console or an
xterm window. This, in effect, create a record of a session.

tar

The standard UNIX archiving utility. Originally a Tape ARchiving program, from whence it derived
its name, it has developed into a general purpose package that can handle all manner of archiving
with all types of destination devices, ranging from tape drives to regular files to even stdout. GNU tar
has long since been patched to accept gzip options, see below.

gzip

The standard GNU/UNIX compression utility, replacing the inferior and proprietary compress.

shar

Shell archiving utility. The files in a shell archive are concatenated without compression, and the
resultant archive is essentially a shell script, complete with #!/bin/sh header, and containing all the
necessary unarchiving commands. Shar archives still show up in Internet newsgroups, but otherwise
shar has been pretty well replaced by tar/gzip. The unshar command unpacks shar archives.

file

A utility for identifying file types. The command file file−name will return a file specification
for file−name, such as ascii text or data. It references the magic numbers found in
/usr/share/magic, /etc/magic, or /usr/lib/magic, depending on the Linux/UNIX
distribution.

uuencode

This utility encodes binary files into ASCII characters, making them suitable for transmission in the
body of an e−mail message or in a newsgroup posting.

uudecode

This reverses the encoding, decoding uuencoded files back into the original binaries.
Example 3−48. uuencoding encoded files
#!/bin/bash

lines=35
Allow 35 lines for the header (very generous).

for File in *
Test all the files in the current working directory...
do
search1=`head −$lines $File | grep begin | wc −w`
search2=`tail −$lines $File | grep end | wc −w`
Files which are uuencoded have a "begin" near the beginning,
and an "end" near the end.
 if [$search1 −gt 0]
 then
 if [$search2 −gt 0]
 then
 echo "uudecoding − $File −"
 uudecode $File
 fi
 fi
done

exit 0

more, less

Pagers that display a text file or text streaming to stdout, one page at a time.

jot, seq

These utilities emit a sequence of integers, with a user selected increment. This can be used to

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 51

advantage in a for loop.
Example 3−49. Using seq to generate loop arguments
#!/bin/bash

for a in `seq 80`
Same as for a in 1 2 3 4 5 ... 80 (saves much typing!).
May also use 'jot' (if present on system).
do
 echo −n "$a "
done

echo

exit 0

Advanced Bash−Scripting HOWTO

3.10. External Filters, Programs and Commands 52

3.11. System and Administrative Commands
The startup and shutdown scripts in /etc/rc.d illustrate the uses (and usefulness) of these comands. These
are usually invoked by root and used for system maintenance or emergency filesystem repairs. Use with
caution, as some of these commands may damage your system if misused.

uname

Output system specifications (OS, kernel version, etc.) to stdout. Invoked with the −a option,
gives verbose system info.
uname −a outputs something like:
Linux localhost.localdomain 2.2.15−2.5.0 #1 Sat Feb 5 00:13:43 EST 2000 i586 unknown

env

Runs a program or script with certain environmental variables set or changed (without
changing the overall system environment).

shopt

This command permits changing shell options on the fly. Works with version 2 of bash only.
shopt −s cdspell
Allows misspelling directory names with 'cd' command.

lockfile

This utility is part of the procmail package (www.procmail.org). It creates a lock file, a
semaphore file that controls access to a file, device, or resource. The lock file serves as a flag
that this particular file, device, or resource is in use by a particular process ("busy"), and
permitting only restricted access (or no access) to other processes. Lock files are used in such
applications as protecting system mail folders from simultaneously being changed by
multiple users, indicating that a modem port is being accessed, and showing that an instance
of Netscape is using its cache. Scripts may check for the existence of a lock file created by a
certain process to check if that process is running. Note that if a script attempts create a lock
file that already exists, the script will likely hang.

cron

Administrative program scheduler, performing such duties as cleaning up and deleting
system log files and updating the slocate database. This is the superuser version of at. It runs
as a daemon (background process) and executes scheduled entries from /etc/crontab.

chroot

CHange ROOT directory. Normally commands are fetched from $PATH, relative to /, the
default root directory. This changes the root directory to a different one (and also changes the
working directory to there). A chroot /opt would cause references to /usr/bin to be
translated to /opt/usr/bin, for example. This is useful for security purposes, for instance
when the system administrator wishes to restrict certain users, such as those telnetting in, to a
secured portion of the filesystem. Note that after a chroot, the execution path for system

3.11. System and Administrative Commands 53

http://www.procmail.org

binaries is no longer valid.
The chroot command is also handy when running from an emergency boot floppy (chroot to
/dev/fd0), or as an option to lilo when recovering from a system crash. Other uses include
installation from a different filesystem (an rpm option). Invoke only as root, and use with
caution.

ldd

Show shared lib dependencies for an executable file.
bash$
ldd /bin/ls
libc.so.6 =62; /lib/libc.so.6 (0x4000c000)
/lib/ld−linux.so.2 =62; /lib/ld−linux.so.2 (0x80000000)

who

Show all users logged on to the system.

w

Show all logged on users and the processes belonging to them. This is an extended version of
who. The output of w may be piped to grep to find a specific user and/or process.
bash#
w | grep startx
grendel tty1 − 4:22pm 6:41 4.47s 0.45s startx

wall

This is an acronym for "write all", i.e., sending a message to all users every terminal logged
on in the network. It is primarily a system administrator's tool, useful, for example, when
warning everyone that the system will shortly go down due to a problem.
wall System going down for maintenance in 5 minutes!

fuser

Identifies the processes (by pid) that are accessing a given file, set of files, or directory.

logger

Appends a user−generated message to the system log (/var/log/messages).
logger Experiencing instability in network connection at 23:10, 05/21.
Now, do a 'tail /var/log/messages'.

free

Shows memory and cache usage in tabular form. The output of this command lends itself to
parsing, using grep, awk or Perl.
bash$
free
 total used free shared buffers cached
 Mem: 30504 28624 1880 15820 1608 16376
 −/+ buffers/cache: 10640 19864
 Swap: 68540 3128 65412

sync

Forces writing all updated data from buffers to hard drive. While not strictly necessary, a
sync assures the sys admin or user that the data just changed will survive a sudden power
failure. In the olden days, a sync sync was a useful precautionary measure before a
system reboot.

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 54

init

The init command is the parent of all processes. Called in the final step of a bootup,
init determines the runlevel of the system from /etc/inittab. Invoked by its alias
telinit, and by root only.

telinit

Symlinked to init, this is a means of changing the system runlevel, usually done for system
maintenance or emergency filesystem repairs. Invoked only by root. This command can be
dangerous − be certain you understand it well before using!

runlevel

Shows the current and last runlevel, that is, whether the system is halted (runlevel 0), in
single−user mode (1), in multi−user mode (2 or 3), in X Windows (5), or rebooting (6).

halt, shutdown, reboot

Command set to shut the system down, usually just prior to a power down.

exec

This is actually a system call that replaces the current process with a specified command. It is
mostly seen in combination with find, to execute a command on the files found. When used
as a standalone in a script, this forces an exit from the script when the exec'ed command
terminates. An exec is also used to reassign file descriptors. exec <zzz−file replaces
stdin with the file zzz−file.

Example 3−50. Effects of exec

#!/bin/bash

exec echo "Exiting $0."
Exit from script.

The following lines never execute.
echo "Still here?"

exit 0

ifconfig

Network interface configuration utility.

route

Show info about or make changes to the kernel routing table.

netstat

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 55

Show current network information and statistics, such as routing tables and active connections.

mknod

Creates block or character device files (may be necessary when installing new hardware on the
system).

mount

Mount a filesystem, usually on an external device, such as a floppy or CDROM. The file
/etc/fstab provides a handy listing of available filesystems, including options, that may be
automatically or manually mounted. The file /etc/mtab shows the currently mounted filesystems
(including the virtual ones, such as /proc).
mount −t iso9660 /dev/cdrom /mnt/cdrom
Mounts CDROM
mount /mnt/cdrom
Shortcut, if /mnt/cdrom listed in /etc/fstab

umount

Unmount a currently mounted filesystem. Before physically removing a previously mounted floppy
or CDROM disk, the device must be umount'ed, else filesystem corruption may result.
umount /mnt/cdrom

lsmod

List installed kernel modules.

insmod

Force insertion of a kernel module. Must be invoked as root.

modprobe

Module loader that is normally invoked automatically in a startup script.

depmod

Creates module dependency file, usually invoked from startup script.

rdev

Get info about or make changes to root device, swap space, or video mode. The functionality of
rdev has generally been taken over by lilo, but rdev remains useful for setting up a ram disk. This is
another dangerous command, if misused.

Using our knowledge of administrative commands, let us examine a system script. One of the shortest and
simplest to understand scripts is killall, used to suspend running processes at system shutdown.

Example 3−51. killall, from /etc/rc.d/init.d

#!/bin/sh

−−62; Comments added by the author of this HOWTO marked by "−−62;".

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 56

−−62; This is part of the 'rc' script package
−−62; by Miquel van Smoorenburg, 60;miquels@drinkel.nl.mugnet.org62;

Bring down all unneeded services that are still running (there shouldn't
be any, so this is just a sanity check)

for i in /var/lock/subsys/*; do
 # −−62; Standard for/in loop, but since "do" is on same line,
 # −−62; it is necessary to add ";".
 # Check if the script is there.
 [! −f $i] 38;38; continue
 # −−62; This is a clever use of an "and list", equivalent to:
 # −−62; if [! −f $i]; then continue

 # Get the subsystem name.
 subsys=${i#/var/lock/subsys/}
 # −−62; Match variable name, which, in this case, is the file name.
 # −−62; This is the exact equivalent of subsys=`basename $i`.

 # −−62; It gets it from the lock file name, and since if there
 # −−62; is a lock file, that's proof the process has been running.
 # −−62; See the "lockfile" entry, above.

 # Bring the subsystem down.
 if [−f /etc/rc.d/init.d/$subsys.init]; then
 /etc/rc.d/init.d/$subsys.init stop
 else
 /etc/rc.d/init.d/$subsys stop
 # −−62; Suspend running jobs and daemons
 # −−62; using the 'stop' shell builtin.
 fi
done

That wasn't so bad. Aside from a little fancy footwork with variable matching, there is no new material there.

Exercise. In /etc/rc.d/init.d, analyze the halt script. It is a bit longer than killall, but similar in
concept. Make a copy of this script somewhere in your home directory and experiment with it (do not run it
as root). Do a simulated run with the −vn flags (sh −vn scriptname). Add extensive comments.
Change the "action" commands to "echos".

Now, look at some of the more complex scripts in /etc/rc.d/init.d. See if you can understand parts of
them. Follow the above procedure to analyze them.

For those scripts needing a single do−it−all tool, a Swiss army knife, there is Perl. Perl combines the
capabilities of sed, awk, and throws in a large subset of C, to boot. It is modular and contains support for
everything ranging from object oriented programming up to and including the kitchen sink. Short Perl scripts
can be effectively embedded in shell scripts, and there may even be some substance to the claim that Perl can
totally replace shell scripting.

Example 3−52. Perl embedded in a bash script

#!/bin/bash

perl −e 'print "This is an embedded Perl script\n"'

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 57

Some shell commands may follow.

exit 0

Advanced Bash−Scripting HOWTO

3.11. System and Administrative Commands 58

3.12. Backticks (`...`)

Command substitution

Use the output of the command within backticks as arguments to another to generate
command line text.
rm `cat filename` (where filename contains list of files to delete)

Incrementing / decrementing variables

z=`expr $z + 3` Note that this use of backticks has been superseded by double parentheses
$((...)) or the let construction.
z=$(($z+3)) or
let z=z+3
let "z += 3"

Example 3−53. Badname, eliminate file names in current directory containing bad characters and
white space.

#!/bin/bash

Delete filenames in current directory containing bad characters.

for filename in *
do
badname=`echo "$filename" | sed −n /[\+\{\;\"\\\=\?~\(\)\60;\62;\38;*\|\$]/p`
Files containing those nasties: + { ; " \ = ? ~ () 60; 62; 38; * | $
rm $badname 262;/dev/null
So error messages deep−sixed.
done

Now, take care of files containing all manner of whitespace.
find . −name "* *" −exec rm −f {} \;
The "{}" references the paths of all the files that "find" finds.
The '\' ensures that the ';' is interpreted literally, as end of command.

exit 0

−

Where file name expected, redirects output to stdout (mostly seen with tar cf)
Example 3−54. Backup of all files changed in last day
#!/bin/bash

Backs up all files in current directory
modified within last 24 hours
in a tarred and gzipped file.

if [$# = 0]
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

tar cvf − `find . −mtime −1 −type f −print` 62; $1.tar
gzip $1.tar

exit 0

3.12. Backticks (`...`) 59

3.13. I/O Redirection
There are always three default "files" open, stdout (the screen), stderr (the screen, also) and stdin (the
keyboard).

62;
62;62;
262;38;1

n<&−

close input file descriptor n

<&−

close stdin

n>&−

close output file descriptor n

>&−

close stdout

Recess Time

A bizarre little intermission whose purpose is to give the reader a chance to catch
his/her breath and maybe giggle a little.

Fellow Linux user, greetings! You are reading a something which will bring you luck
and good fortune. Just e−mail ten copies of this document to ten of your friends. Before
you make the copies, send a 100−line 'bash' script to the first person on the list given at
the bottom of this letter. Then delete their name and add yours to the bottom of the list.

Don't break the chain! Make the copy within 48 hours. Wilfred P. of Houston failed to
send out his ten copies and woke the next morning to find his job description changed
to "COBOL programmer." Howard L. of Newport News sent out his ten copies and
within a month had enough hardware and software to build a 100−node Beowulf
cluster dedicated to playing 'xbill'. Amelia V. of Chicago laughed at this letter and
broke the chain. Shortly thereafter, a fire broke out in her terminal and she now spends
her days writing documentation for MS Windows.

Don't break the chain! Send out your ten copies today!

−−Courtesy 'NIX "fortune cookies", with a few alterations and many apologies

3.13. I/O Redirection 60

3.14. Regular Expressions
In order to fully utilize the power of shell scripting, you need to master regular expressions.

3.14.1. A Brief Introduction to Regular Expressions

An expression is simply a set of characters that has an interpretation above and beyond its literal meaning. A
quote symbol ("), for example, may denote speech by a character, ditto, or a meta−meaning for the symbols
that follow. Regular expressions are a set of characters that UNIX endows with special features.

The main uses for regular expressions (REs) are text searches and manipulation. An RE matches a single
character or a set of characters.

•
The asterisk * matches any number of characters, including zero.

•
The dot . matches any one character, except a newline.

•
The question mark ? matches zero or one of the previous RE.

•
The plus + matches one or more of the previous RE.

•
The caret ^ matches the beginning of a line, but sometimes, depending on context, negates the
meaning of a set of characters in an RE.

•
The dollar sign $ at the end of a an RE matches the end of a line.

•
Brackets [] enclose a set of characters to match in a single RE.

•
The backslash \ escapes a special character.

See "Sed & Awk", by Dougherty and Robbins (see Bibliography) for a complete treatment of REs.

3.14.2. Using REs in scripts

Sed, awk, and Perl, used as filters in scripts, take REs as arguments when "sifting" or transforming files or
I/O streams.

3.14. Regular Expressions 61

3.15. Subshells

•
()

•
{}

3.15. Subshells 62

3.16. Functions
Like "real" programming languages, bash has functions, though in a somewhat limited implementation. A
function is a subroutine, a code block that implements a set of operations. Whenever there is repetitive code,
when a task repeats with only slight variations, then writing a function should be investigated.

functionfunction−name {
command...
}
or

function−name () {
command...
}

The second form will cheer the hearts of C programmers.

The opening bracket in the function may optionally be placed on the second line, to more nearly resemble C
function syntax.

function−name ()
{
command...
}

Functions are called, triggered, simply by invoking their names.

Note that a function itself must precede the first call to it. There is no method of "declaring" the function, as,
for example, in C.

Example 3−55. Simple function

#!/bin/bash

funky ()
{
 echo This is a funky function.
 echo Now exiting funky function.
}

Note: function must precede call.

Now, call the function.

funky

exit 0

More complex functions may have arguments passed to them and may return exit values to the script for
further processing.

3.16. Functions 63

function−name $arg1 $arg2

The function refers to the passed arguments by position (as if they were positional parameters), that is, $1,
$2, etc.

Example 3−56. Positional Parameters

#!/bin/bash

func2 () {
 if [−z $1]
 # Checks if any params.
 then
 echo "No parameters passed to function."
 return 0
 else
 echo "Param #1 is $1."
 fi

 if [$2]
 then
 echo "Parameter #2 is $2."
 fi
}

func2
Called with no params
echo

func2 first
Called with one param
echo

func2 first second
Called with two params
echo

exit 0

exit status

Functions return a value, called an exit status. The exit status may be explicitly specified by a
return statement, otherwise it is the exit status of the last command in the function (0 if
successful, and a non−zero error code if not). This exit status may be used in the script by
referring to as $?.

return

Terminates a function. The return statement may optionally take an integer argument, which
is returned to the calling script as the "exit status" of the function, and this exit status is
assigned to the variable $?.

Example 3−57. Converting numbers to Roman numerals

Advanced Bash−Scripting HOWTO

3.16. Functions 64

#!/bin/bash

Arabic number to Roman numeral conversion
Range 0 − 200
It's crude, but it works.

Extending the range and otherwise improving the script
is left as an exercise for the reader.

Usage: roman number−to−convert

ARG_ERR=1
OUT_OF_RANGE=200

if [−z $1]
then
 echo "Usage: `basename $0` number−to−convert"
 exit $ARG_ERR
fi

num=$1
if [$num −gt $OUT_OF_RANGE]
then
 echo "Out of range!"
 exit $OUT_OF_RANGE
fi

to_roman ()
{
number=$1
factor=$2
rchar=$3
let "remainder = number − factor"
while [$remainder −ge 0]
do
 echo −n $rchar
 let "number −= factor"
 let "remainder = number − factor"
done

return $number
}

Note: must declare function
before first call to it.

to_roman $num 100 C
num=$?
to_roman $num 90 LXXXX
num=$?
to_roman $num 50 L
num=$?
to_roman $num 40 XL
num=$?
to_roman $num 10 X
num=$?
to_roman $num 9 IX
num=$?
to_roman $num 5 V
num=$?
to_roman $num 4 IV
num=$?

Advanced Bash−Scripting HOWTO

3.16. Functions 65

to_roman $num 1 I

echo

exit 0

local variables

A variable declared as local is one that is visible only within the block of code in which it appears. In
a shell script, this means the variable has meaning only within the function it is internal to.
Example 3−58. Local variable visibility
#!/bin/bash

func ()
{
 local a=23
 echo
 echo "a in function is $a"
 echo
}

func

Now, see if local 'a'
exists outside function.

echo "a outside function is $a"
echo
Nope, 'a' not visible globally.

exit 0

Local variables permit recursion (a recursive function is one that calls itself), but this practice can
involve much computational overhead and is definitely not recommended in a shell script.
Example 3−59. Recursion, using a local variable
#!/bin/bash

Does bash permit recursion?
Well, yes, but...
You gotta have rocks in your head to try it.

Name this script "factorial".

MAX_ARG=5
WRONG_ARGS=1
RANGE_ERR=2

if [−z $1]
then
 echo "Usage: `basename $0` number"
 exit $WRONG_ARGS
fi

if [$1 −gt $MAX_ARG]
then
 echo "Out of range (5 is maximum)."
 # Let's get real now...
 # If you want greater range, rewrite this
 # in a real programming language.
 exit $RANGE_ERR
fi

fact ()
{
 local number=$1
 # number must be declared as local
 # otherwise this doesn't work.
 if [$number −eq 0]
 then
 factorial=1
 else
 let "decrnum = number − 1"
 fact $decrnum
 let "factorial = $number * $?"
 fi

 return $factorial
}

fact $1
echo "Factorial of $1 is $?."

exit 0

Advanced Bash−Scripting HOWTO

3.16. Functions 66

3.17. List Constructs
The "and list" and "or list" constructs provide a means of processing a number of commands consecutively.
These can effectively replace complex nested if/then or even case statements. Note that the exit status of an
"and list" or an "or list" is the exit status of the last command executed.

and list

command−1 38;38; command−2 38;38; command−3 38;38; ... command−n Each
command executes in turn provided that the previous command has given a return value of
true. At the first false return, the command chain terminates (the first command returning
false is the last one to execute).

Example 3−60. Using an "and list" to test for command−line arguments

#!/bin/bash

"and list"

if [! −z $1] 38;38; echo "Argument #1 = $1" 38;38; [! −z $2] 38;38; echo "Argument #2 = $2"
then
 echo "At least 2 arguments to script."
 # All the chained commands return true.
else
 echo "Less than 2 arguments to script."
 # At least one of the chained commands returns false.
fi
Note that "if [! −z $1]" works, but its supposed equivalent,
"if [−n $1]" does not. This is a bug, not a feature.

This accomplishes the same thing, coded using "pure" if/then statements.
if [! −z $1]
then
 echo "Argument #1 = $1"
fi
if [! −z $2]
then
 echo "Argument #2 = $2"
 echo "At least 2 arguments to script."
else
 echo "Less than 2 arguments to script."
fi
It's longer and less elegant than using an "and list".

exit 0

or list

command−1 || command−2 || command−3 || ... command−n Each command executes in turn for
as long as the previous command returns false. At the first true return, the command chain terminates
(the first command returning true is the last one to execute). This is obviously the inverse of the "and
list".

3.17. List Constructs 67

Example 3−61. Using "or lists" in combination with an "and list"
#!/bin/bash

"Delete", not−so−cunning file deletion utility.
Usage: delete filename

if [−z $1]
then
 file=nothing
else
 file=$1
fi
Fetch file name (or "nothing") for deletion message.

[! −f $1] 38;38; echo "$1 not found. Can't delete a nonexistent file."
AND LIST, to give error message if file not present.

[! −f $1] || (rm −f $1; echo "$file deleted.")
OR LIST, to delete file if present.
(command1 ; command2) is, in effect, an AND LIST variant.

Note logic inversion above.
AND LIST executes on true, OR LIST on false.

[! −z $1] || echo "Usage: `basename $0` filename"
OR LIST, to give error message if no command line arg (file name).

exit 0

Clever combinations of "and" and "or" lists are possible, but the logic may easily become convoluted and
require extensive debugging.

Advanced Bash−Scripting HOWTO

3.17. List Constructs 68

3.18. Arrays
Newer versions of bash support one−dimensional arrays. Arrays may be declared with the
variable[xx] notation or explicitly by a declare −a variable statement. To dereference (find the
contents of) an array variable, use curly bracket notation, that is, ${variable[xx]}.

Example 3−62. Simple array usage

#!/bin/bash

area[11]=23
area[13]=37
area[51]=UFOs

Note that array members need not be consecutive
or contiguous.

Some members of the array can be left uninitialized.
Gaps in the array are o.k.

echo −n "area[11] = "
echo ${area[11]}
echo −n "area[13] = "
echo ${area[13]}
Note that {curly brackets} needed
echo "Contents of area[51] are ${area[51]}."

Contents of uninitialized array variable print blank.
echo −n "area[43] = "
echo ${area[43]}
echo "(area[43] unassigned)"

echo

Sum of two array variables assigned to third
area[5]=`expr ${area[11]} + ${area[13]}`
echo "area[5] = area[11] + area[13]"
echo −n "area[5] = "
echo ${area[5]}

area[6]=`expr ${area[11]} + ${area[51]}`
echo "area[6] = area[11] + area[51]"
echo −n "area[6] = "
echo ${area[6]}
This doesn't work because
adding an integer to a string is not permitted.

exit 0

Arrays variables have a syntax all their own, and even standard bash operators have special options adapted
for array use.

Example 3−63. Some special properties of arrays

#!/bin/bash

declare −a colors

3.18. Arrays 69

Permits declaring an array without specifying size.

echo "Enter your favorite colors (separated from each other by a space)."

read −a colors
Special option to 'read' command,
allowing it to assign elements in an array.

echo

element_count=${#colors[@]}
Special syntax to extract number of elements in array.
index=0

while [$index −lt $element_count]
do
 echo ${colors[$index]}
 let "index = $index + 1"
done

echo

exit 0

Arrays enable implementing a shell script version of the Sieve of Erastosthenes. Of course, a
resource−intensive application of this nature should really be written in a compiled language, such as C. It
runs excruciatingly slowly as a script.

Example 3−64. Complex array application: Sieve of Erastosthenes

#!/bin/bash

sieve.sh
Sieve of Erastosthenes
Ancient algorithm for finding prime numbers.

This runs a couple of orders of magnitude
slower than equivalent C program.

LOWER_LIMIT=1
Starting with 1.
UPPER_LIMIT=1000
Up to 1000.
(You may set this higher...
if you have time on your hands.)

PRIME=1
NON_PRIME=0

let SPLIT=UPPER_LIMIT/2
Optimization:
Need to test numbers only
halfway to upper limit.

declare −a Primes
Primes[] is an array.

initialize ()

Advanced Bash−Scripting HOWTO

3.18. Arrays 70

{
Initialize the array.

i=$LOWER_LIMIT
until [$i −gt $UPPER_LIMIT]
do
 Primes[i]=$PRIME
 let "i += 1"
done
Assume all array members guilty (prime)
until proven innocent.
}

print_primes ()
{
Print out the members of the Primes[] array
tagged as prime.

i=$LOWER_LIMIT

until [$i −gt $UPPER_LIMIT]
do

 if [${Primes[i]} −eq $PRIME]
 then
 printf "%8d" $i
 # 8 spaces per number
 # gives nice, even columns.
 fi

 let "i += 1"

done

}

sift ()
{
Sift out the non−primes.

let i=$LOWER_LIMIT+1
We know 1 is prime, so
let's start with 2.

until [$i −gt $UPPER_LIMIT]
do

if [${Primes[i]} −eq $PRIME]
Don't bother sieving numbers
already sieved (tagged as non−prime).
then

 t=$i

 while [$t −le $UPPER_LIMIT]
 do
 let "t += $i "
 Primes[t]=$NON_PRIME
 # Tag as non−prime
 # all multiples.
 done

Advanced Bash−Scripting HOWTO

3.18. Arrays 71

fi

 let "i += 1"
done

}

Invoke the functions sequentially.
initialize
sift
print_primes
echo
This is what they call structured programming.

exit 0

Advanced Bash−Scripting HOWTO

3.18. Arrays 72

3.19. Files

•
/etc/profile

•
$HOME/.bashrc

3.19. Files 73

3.20. Here Documents
A here document is a way of feeding a command script to an interactive program, such as ftp, telnet, or ex.
Typically, it consists of a command list to the program, delineated by a limit string. The special symbol
<< precedes the limit string. This has the same effect as redirecting the output of a file into the program, that
is,

interactive−program 60; command−file

where command−file contains

command #1
command #2
...

The "here document" alternative looks like this:

#!/bin/bash
interactive−program 60;60;LimitString
command #1
command #2
...
LimitString

Choose a limit string sufficiently unusual that it will not occur anywhere in the command list and confuse
matters.

Note that "here documents" may sometimes be used to good effect with non−interactive utilities and
commands.

Example 3−65. dummyfile: Creates a 2−line dummy file

#!/bin/bash

Non−interactive use of 'vi' to edit a file.
Emulates 'sed'.

if [−z $1]
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

TARGETFILE=$1

vi $TARGETFILE 60;60;x23LimitStringx23
i
This is line 1 of the example file.
This is line 2 of the example file.
^[
ZZ
x23LimitStringx23

Note that ^[above is a literal escape
typed by Control−V Escape

exit 0

3.20. Here Documents 74

The above script could just as effectively have been implemented with ex, rather than vi. Here documents
containing a list of ex commands are common enough to form their own category, known as ex scripts.

Example 3−66. broadcast: Sends message to everyone logged in

#!/bin/bash

wall 60;60;zzz23EndOfMessagezzz23
Dees ees a message frrom Central Headquarters:
Do not keel moose!
Other message text goes here.
Note: Comment lines printed by 'wall'.
zzz23EndOfMessagezzz23

Could have been done more efficiently by
wall 60;message−file

exit 0

Example 3−67. Multi−line message using cat

#!/bin/bash

'echo' is fine for printing single line messages,
but somewhat problematic for for message blocks.
A 'cat' here document overcomes this limitation.

cat 60;60;End−of−message
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
This is line 1 of the message.
This is line 2 of the message.
This is line 3 of the message.
This is line 4 of the message.
This is the last line of the message.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
End−of−message

exit 0

Example 3−68. upload: Uploads a file pair to "Sunsite" incoming directory

#!/bin/bash

upload
upload file pair (filename.lsm, filename.tar.gz)
to incoming directory at Sunsite

if [−z $1]
then
 echo "Usage: `basename $0` filename"
 exit 1
fi

Filename=`basename $1`
Strips pathname out of file name

Server="metalab.unc.edu"

Advanced Bash−Scripting HOWTO

3.20. Here Documents 75

Directory="/incoming/Linux"
These need not be hard−coded into script,
may instead be changed to command line argument.

Password="your.e−mail.address"
Change above to suit.

ftp −n $Server 60;60;End−Of−Session
−n option disables auto−logon

user anonymous $Password
binary
bell
Ring 'bell' after each file transfer
cd $Directory
put $Filename.lsm
put $Filename.tar.gz
bye
End−Of−Session

exit 0

Note: Some utilities will not work in a "here document". The pagers, more and less are
among these.

For those tasks too complex for a "here document", consider using the expect scripting
language, which is specifically tailored for feeding input into non−interactive programs.

Advanced Bash−Scripting HOWTO

3.20. Here Documents 76

3.21. Miscellany

Uses of /dev/null

Think of /dev/null as a "black hole". It is the nearest equivalent to a write−only file.
Everything written to it disappears forever. Attempts to read or output from it result in
nothing. Nevertheless, /dev/null can be quite useful both from the command line and in
scripts.
Suppressing stdout or stderr (from Example 3−70):
rm $badname 262;/dev/null
So error messages [stderr] deep−sixed.

Deleting contents of a file, but preserving the file itself, with all attendant permissions (from
Example 2−1 and Example 2−2):
cat /dev/null 62; /var/log/messages
cat /dev/null 62; /var/log/wtmp

Automatically emptying the contents of a log file (especially good for dealing with those
nasty "cookies" sent by Web commercial sites):
rm ~/.netscape/cookies
ln −s /dev/null ~/.netscape/cookies
All cookies now get sent to a black hole.

Uses of /dev/zero

Like /dev/null, /dev/zero is a pseudo file, but it actually contains nulls (numerical
zeros, not the ASCII kind). Output written to it disappears, and it is fairly difficult to actually
read the nulls in /dev/zero, though it can be done with od or a hex editor. The chief use
for /dev/zero is in creating an initialized dummy file of specified length intended as a
temporary swap file.

Example 3−69. Setting up a swapfile using /dev/zero

#!/bin/bash

Creating a swapfile.
This script must be run as root.

FILE=/swap
BLOCKSIZE=1024
PARAM_ERROR=33
SUCCESS=0

if [−z $1]
then
 echo "Usage: `basename $0` swapfile−size"
 # Must be at least 40 blocks.
 exit $PARAM_ERROR
fi

dd if=/dev/zero of=$FILE bs=$BLOCKSIZE count=$1

echo "Creating swapfile of size $1 blocks (KB)."

mkswap $FILE $1
swapon $FILE

echo "Swapfile activated."

3.21. Miscellany 77

exit $SUCCESS

Advanced Bash−Scripting HOWTO

3.21. Miscellany 78

3.22. Debugging
The bash shell contains no debugger, nor even any debugging−specific commands or constructs. Syntax
errors or outright typos in the script generate cryptic error messages that are often of no help in debugging a
non−functional script.

Example 3−70. test23, a buggy script

#!/bin/bash

a=37

if [$a −gt 27]
then
 echo $a
fi

exit 0

Output from script:

./test23: [37: command not found

What's wrong with the above script (hint: after the if)?

What if the script executes, but does not work as expected? This is the all too familiar logic error.

Example 3−71. test24, another buggy script

#!/bin/bash

This is supposed to delete all filenames
containing embedded spaces in current directory,
but doesn't. Why not?

badname=`ls | grep ' '`

echo "$badname"

rm "$badname"

exit 0

To find out what's wrong with Example 3−71, uncomment the echo "$badname" line. Echo statements
are useful for seeing whether what you expect is actually what you get.

Summarizing the symptoms of a buggy script,

1.
It bombs with an error message syntax error, or

2.
It runs, but does not work as expected (logic error)

3.22. Debugging 79

3. It runs, works as expected, but has nasty side effects (logic bomb.

Tools for debugging non−working scripts include

1.
echo statements at critical points in the script to trace the variables, and otherwise give a snapshot of
what is going on.

2.
using the tee filter to check processes or data flows at critical points.

3.
setting option flags −n −v −x

sh −n scriptname checks for syntax errors without actually running the script. This is the
equivalent of inserting set −n or set −o noexec into the script. Note that certain types of
syntax errors can slip past this check.

sh −v scriptname echoes each command before executing it. This is the equivalent of inserting
set −v or set −o verbose in the script.

sh −x scriptname echoes the result each command, but in an abbreviated manner. This is the
equivalent of inserting set −x or set −o xtrace in the script.

Inserting set −u or set −o nounset in the script runs it, but gives an unbound variable error
message at each attempt to use an undeclared variable.

4.
trapping at exit

The exit command in a script actually sends a signal 0, terminating the process, that is, the script
itself. It is often useful to trap the exit, forcing a "printout" of variables, for example. The trap must
be the first command in the script.

trap

Specifies an action on receipt of a signal; also useful for debugging.
trap 2 #ignore interrupts (no action specified)
trap 'echo "Control−C disabled."' 2

Example 3−72. trapping at exit

#!/bin/bash

trap 'echo Variable Listing −−− a = $a b = $b' EXIT
EXIT is the name of the signal generated
upon exit from a script.

a=39

b=36

exit 0
Note that commenting out the 'exit' command

Advanced Bash−Scripting HOWTO

3.22. Debugging 80

does not make a difference.

Advanced Bash−Scripting HOWTO

3.22. Debugging 81

3.23. Options
Options are settings that change shell and/or script behavior. A script enables options by the set command.

The following are some useful options. They may be set in either abbreviated form or by complete name.

Table 3−1. bash options

Abbreviation Name Effect

−C noclobber Prevent overwriting of files by redirection (may be overridden by >|)

−f noglob Filename expansion disabled

−p privileged Script runs as "suid"

−u nounset Attempts to use undefined variables result in error message

−v verbose Print commands to stdout before executing

−x xtrace Similar to −v, but expands commands

− (none) End of options flag. All other args are positional parameters.

−− (none) Unset positional parameters. If arguments given (−−arg1arg2), positional
parameters set to arguments.

3.23. Options 82

3.24. Gotchas
Assigning reserved words or characters to variable names.

var1=case
Causes problems.
var2=xyz((!*
Causes even worse problems.

Using a hyphen or other reserved characters in a variable name.

var−1=23
Use 'var_1' instead.

Using white space inappropriately (in contrast to other programming languages bash can be finicky about
white space).

var1 = 23
'var1=23' is correct.
let c = $a − $b
'let c=$a−$b' or 'let "c = $a − $b"' are correct.
if [$a −le 5]
'if [$a −le 5]' is correct.

Using uninitialized variables (that is, using variables before a value is assigned to them). An uninitialized
variable has a value of "null", not zero.

Commands issued from a script may fail to execute because the script owner lacks execute permission for
them. If a user cannot invoke a command from the command line, then putting it into a script will likewise
fail. Try changing the attributes of the command in question, perhaps setting the suid bit (as root, of course).

Using bash version 2 functionality (see below) in a script headed with #!/bin/bash may cause a bailout
with error messages. Your system may still have an older version of bash as the default installation. Try
changing the header of the script to #!/bin/bash2.

Making scripts "suid" is generally a bad idea, as it may compromise system security. Administrative scripts
should be run by root, not regular users.

3.24. Gotchas 83

3.25. Bash, version 2
The current version of bash, the one you have running on your machine, is actually version 2. This update of
the classic bash scripting language added array variables, string and parameter expansion, and indirect
variable references, among other features.

Example 3−73. String expansion

#!/bin/bash

String expansion.
Introduced in version 2 of bash.

Strings of the form $'xxx'
have the standard escaped characters interpreted.

echo $'Ringing bell 3 times \a \a \a'
echo $'Three form feeds \f \f \f'
echo $'10 newlines \n\n\n\n\n\n\n\n\n\n'

exit 0

Example 3−74. Indirect variable references

#!/bin/bash

Indirect variable referencing.
This has a few of the attributes of references in C++.

a=letter_of_alphabet
letter_of_alphabet=z

Direct reference.
echo "a = $a"

Indirect reference.
echo "Now a = ${!a}"

echo

t=table_cell_3
table_cell_3=24
echo "t = ${!t}"
table_cell_3=387
echo "Value of t changed to ${!t}"
Useful for referencing members
of an array or table,
or for simulating a multi−dimensional array.
An indexing option would have been nice (sigh).

exit 0

Example 3−75. Using arrays and other miscellaneous trickery to deal four random hands from a deck
of cards

#!/bin/bash2

3.25. Bash, version 2 84

Must specify version 2 of bash, else might not work.

Cards:
deals four random hands from a deck of cards.

UNPICKED=0
PICKED=1

DUPE_CARD=99

LOWER_LIMIT=0
UPPER_LIMIT=51
CARDS_IN_SUITE=13
CARDS=52

declare −a Deck
declare −a Suites
declare −a Cards
It would have been easier and more intuitive
with a single, 3−dimensional array. Maybe
a future version of bash will support
multidimensional arrays.

initialize_Deck ()
{
i=$LOWER_LIMIT
until [$i −gt $UPPER_LIMIT]
do
 Deck[i]=$UNPICKED
 let "i += 1"
done
Set each card of "Deck" as unpicked.
echo
}

initialize_Suites ()
{
Suites[0]=C #Clubs
Suites[1]=D #Diamonds
Suites[2]=H #Hearts
Suites[3]=S #Spades
}

initialize_Cards ()
{
Cards=(2 3 4 5 6 7 8 9 10 J Q K A)
Alternate method of initializing array.
}

pick_a_card ()
{
card_number=$RANDOM
let "card_number %= $CARDS"
if [${Deck[card_number]} −eq $UNPICKED]
then
 Deck[card_number]=$PICKED
 return $card_number
else
 return $DUPE_CARD
fi
}

Advanced Bash−Scripting HOWTO

3.25. Bash, version 2 85

parse_card ()
{
number=$1
let "suite_number = number / CARDS_IN_SUITE"
suite=${Suites[suite_number]}
echo −n "$suite−"
let "card_no = number % CARDS_IN_SUITE"
Card=${Cards[card_no]}
printf %−4s $Card
Print cards in neat columns.
}

seed_random ()
{
Seed random number generator.
seed=`eval date +%s`
let "seed %= 32766"
RANDOM=$seed
}

deal_cards ()
{
echo

cards_picked=0
while [$cards_picked −le $UPPER_LIMIT]
do
 pick_a_card
 t=$?

 if [$t −ne $DUPE_CARD]
 then
 parse_card $t

 u=$cards_picked+1
 # Change back to 1−based indexing (temporarily).
 let "u %= $CARDS_IN_SUITE"
 if [$u −eq 0]
 then
 echo
 echo
 fi
 # Separate hands.

 let "cards_picked += 1"
 fi
done

echo

return 0
}

Structured programming:
entire program logic modularized in functions.

#================
seed_random
initialize_Deck
initialize_Suites

Advanced Bash−Scripting HOWTO

3.25. Bash, version 2 86

initialize_Cards
deal_cards

exit 0
#================

Exercise 1:
Add comments to thoroughly document this script.

Exercise 2:
Revise the script to print out each hand sorted in suites.
You may add other bells and whistles if you like.

Exercise 3:
Simplify and streamline the logic of the script.

Advanced Bash−Scripting HOWTO

3.25. Bash, version 2 87

Chapter 4. Credits
Philippe Martin translated this document into DocBook/SGML. While not on the job at a small French
company as a software developer, he enjoys working on GNU/Linux documentation and software, reading
literature, playing music, and for his peace of mind making merry with friends. You may run across him
somewhere in France or in the Basque Country, or email him at feloy@free.fr.

Chapter 4. Credits 88

mailto:feloy@free.fr
mailto:feloy@free.fr
mailto:feloy@free.fr

Bibliography

Dale Dougherty and Arnold Robbins, Sed and Awk, 2nd edition, O'Reilly and Associates, 1997,
1−156592−225−5.

To unfold the full power of shell scripting, you need at least a passing familiarity with sed and awk. This is
the standard tutorial. It includes an excellent introduction to "regular expressions". Read this book.

Aeleen Frisch, Essential System Administration, 2nd edition, O'Reilly and Associates, 1995, 1−56592−127−5.

This excellent sys admin manual has a decent introduction to shell scripting for sys administrators and does a
nice job of explaining the startup and initialization scripts. The book is long overdue for a third edition (are
you listening, Tim O'Reilly?).

Stephen Kochan and Patrick Woods, Unix Shell Programming, Hayden, 1990, 067248448X.

The standard reference, though a bit dated by now.

Cameron Newham and Bill Rosenblatt, Learning the Bash Shell, 2nd edition, O'Reilly and Associates, 1998,
1−56592−347−2.

This is a valiant effort at a decent shell primer, but somewhat deficient in coverage on programming topics
and lacking sufficient examples.

Jerry Peek, Tim O'Reilly, and Mike Loukides, Unix Power Tools, 2nd edition, O'Reilly and Associates,
Random House, 1997, 1−56592−260−3.

Contains a couple of sections of very informative in−depth articles on shell programming, but falls short of
being a tutorial. It also reproduces much of the regular expressions tutorial from the Dougherty and Robbins
book, above.

Ellen Siever, Linux in a Nutshell, 2nd edition, O'Reilly and Associates, 1999, 1−56592−585−8.

The all−around best Linux command reference, even has a bash section.

The O'Reilly books on Perl. (Actually, any O'Reilly books.)

The man pages for bash and bash2, date, expect, expr, find, grep, gzip, patch, tar, tr, xargs. The texinfo
documentation on bash, dd, gawk, and sed.

The excellent "Bash Reference Manual", by Chet Ramey and Brian Fox, distributed as part of the
"bash−2−doc" package (available as an rpm).

Bibliography 89

Appendix A. Copyright
The "Advanced Bash−Scripting HOWTO" is copyright, (c) 2000, by Mendel Cooper. This document may
only be distributed subject to the terms and conditions set forth in the LDP License.

If this document is incorporated into a printed book, the author requests a courtesy copy (this is a request, not
a requirement).

Notes

[1]
A flag is an argument that acts as a signal, switching script behaviors on or off.

Appendix A. Copyright 90

http://www.linuxdoc.org/manifesto.html
http://www.linuxdoc.org/manifesto.html

	Table of Contents
	Advanced Bash-Scripting HOWTO
	A guide to shell scripting, using Bash
	Mendel Cooper

	Chapter 1. Why Shell Programming?
	Chapter 2. Starting Off With a Sha-Bang
	2.1. Invoking the script
	2.2. Shell wrapper, self-executing script
	Chapter 3. Tutorial / Reference
	3.1. exit and exit status
	3.2. Special characters used in shell scripts
	3.3. Variables
	3.4. Quoting
	3.5. Tests
	3.5.1. File test operators
	3.5.2. Comparison operators (binary)

	3.6. Operations
	3.7. Variables Revisited
	3.7.1. Typing variables: declare or typeset
	3.7.2. RANDOM: generate random integer

	3.8. Loops
	3.9. Internal Commands and Builtins
	3.9.1. Job Control Commands

	3.10. External Filters, Programs and Commands
	3.11. System and Administrative Commands
	3.12. Backticks (`...`)
	3.13. I/O Redirection
	3.14. Regular Expressions
	3.14.1. A Brief Introduction to Regular Expressions
	3.14.2. Using REs in scripts
	Notes

	3.15. Subshells
	3.16. Functions
	3.17. List Constructs
	3.18. Arrays
	3.19. Files
	3.20. Here Documents
	3.21. Miscellany
	3.22. Debugging
	3.23. Options
	3.24. Gotchas
	3.25. Bash, version 2
	Chapter 4. Credits
	Bibliography
	Appendix A. Copyright

